

- Build a Booking & Scheduling System -

Project Report
MIS 531 - 002

LIGHT^HOUSE Team:

A.H., Yazan

Du, Po-Yi

Li, Xiao

Luo, Xi

Shentu, Nan

Wang, Mingda

1

Table of Contents

Chapter 1 ……………………………………………………………………………………. 2

Chapter 2 ……………………………………………………………………………………. 4

Chapter 3 ……………………………………………………………………………………. 10

Chapter 4 ……………………………………………………………………………………. 34

Chapter 5 ……………………………………………………………………………………. 60

Chapter 6 ……………………………………………………………………………………. 74

Chapter 7 ……………………………………………………………………………………. 88

2

Chapter 1.

Our client is the Arizona Wildcat Academic Center (abbreviate that by calling it C.A.T.S.

Academics in the rest of report). The normal goal of C.A.T.S Academics is help student-athletes

graduate and there are more than 500 student-athletes belong C.A.T.S Academics. Therefore, the

department provides these students a good place to study and offer all possible academic

supports and resources, such as tutoring services, to student athletes. This October, the

department moved to a bigger building with more various purpose rooms and then want to hire

more amounts of high-quality workers. They intend to specify the correct purpose of each room

in this new building. In addition, they want to track Tutors, for examples, keeping records

whether the tutor attends the tutoring appointments or not and the total number of working hours.

Considered these new demands, they want to setup a new online booking & scheduling system.

The mission of our team is to help C.A.T.S. Academics create a database system and front-end

booking & scheduling procedure.

The main Users of system include: staffs (Administrators, Counselors, Front Desks, and

Learning Specialists) and students. Based on their roles, these users will be able to access

different features of the system. And we are achieving to offer different level of login access

based on user authority. The users that access an unpermitted section of the site must be bounced

back to the front page or redirected somewhere else. The department wants to record every

staff’s First Name, Last Name, Password, Email, Phone Number, User Type, Street Address,

City, State, and Zip Code. Otherwise, every staff has a unique User ID. Users are composited to

User Type. Each User Type records the unique Usertype_ID and Number of users.

Each student has a student ID. C.A.T.S wants to track the courses that students are taking, and

the professors who are teaching the courses. There is a course schedule recorded the

corresponding section Number. Course has a course ID. C.A.T.S wants to know the title of

courses that students are taking as well as the description of the course. Further, C.A.T.S would

like to know students’ attendance to courses. The attendance record the record_ID and details.

Professor has a university employee ID. C.A.T.S would like to track to know the professor’s full

name, the department that a given professor is in. Student's’ Sport Type and Academic Standing

should be recorded in the database.

In addition, C.A.T.S. Academics require make a variety of Bookings. Hence, there will be four

types of Room Booking in the Booking Type: room reservation for self-studying, tutoring

appointments to improve students learning skills, training sessions among the learning specialists

and tutors, and special events that could block any rooms anytime. Also, they want to record the

utilization of each room, and keep tracks of the users who reserve and check-in to each room in

details. Student alone can make reservations for self-study purpose, however, student must talk

to his/her counselor to make tutor appointments. The Bookings are composited to Booking

Type. Each booking Type records the unique BookingType_ID and number of bookings.

Booking has a booking ID. C.A.T.S wants to track booking types, duration, start time, end time,

semester, booking date and status (e.g: on time, canceled, no show and updated). For all kinds of

booking, users must check-in at the front desk to confirm their attendance for their booking.

However, students can self-check in their self-studying reservations. C.A.T.S. Academics staffs

(Administrators, Counselors, Front Desks, and Learning Specialists) will also be able to make

room reservations based on the availability of rooms for students. A reservation created by a

3

student can have a maximum duration of two hours, but can be as short as 30 minutes. Students

can only make one reservation at the same period. However, Staffs except front desks can make

several reservations at a time with no limit on duration, adjacent reservations, or time in advance.

Each booking must correspond only one room. The period of reservation can be if two hours.

One shorter than two-hour reservation can be extended two hours based on rooms’ availability.

A reservation must be booked for at least 30 minutes. Students must check-in at the front desk to

start their reservation session. Students can also early check-out for their reservations. If C.A.T.S

staff decided to book rooms based on events, existing reservations on the room at that time will

be cancelled, and students will be notified via email.

C.A.T.S has a group of administrative staff. Administrators can access all features of the system,

e.g: administrators can create reservations without restrictions. Administrator can create events

in the system. Events will occupy rooms.

Counselors guide the sports. Sports expertise students. C.A.T.S wants to record the sports name

and coach of sports. Counselors will be assisting students in finding a tutor. Counselors will help

student in making appointments with tutors based on student’s requests or if the Learning

specialist determined the student is struggling with his/her coursework. Counselors will collect

students’ availabilities, and pass that along to Learning specialist. Learning specialist are

responsible for communicating with tutors, and reserve rooms for appointments. Learning

specialist charge the subjects to find the related tutors. Counselors can also see their

corresponding students of current reservations and appointments.

Tutor has a tutor ID. C.A.T.S will track tutors’ first names, last names, and academic standings.

Tutors need to participate both training sections and appointments. Tutors will provide their

available tutoring schedules and competent courses at the beginning of semester. Based on

students’ and tutors’ schedule and subject, learning specialists match students and tutors, which

result in tutor appointments. Based on the university’s policy, the maximum working hours for

each tutor are 20 hours per week. Once a given tutor has worked 20 hours in a week, tutor

coordinators will not match that tutor with other students. Each tutor may have one subject or

subjects that he/she may be comfortable tutoring. C.A.T.S wants to also track what are the level

of tutor skill in the skill level. Subject has a subject name and description. Subjects belong to

courses.

Learning specialists are responsible for matching the needs of students with tutors’ availabilities.

When tutor coordinators receive tutoring requests from academic counselors, they will check

tutors’ availabilities through their existing system, GradesFirst. The learning specialists will then

arrange tutor appointments for both students and tutors. A tutoring appointment results in a

reservation for a room. C.A.T.S will also track the tutor ID and subjects for appointments. If the

students or tutors request to change scheduled appointments, they need to contact a learning

specialist to adjust appointments.

Tutor coordinators can also create reservations for staff meetings, or cancel any reservations they

created. Further, coordinator can create the training sessions for the entry-level tutors. Training

session has a training title. We want to record the contents in training record.

4

The employee at the front desk can also create reservations or cancel reservations per students’

requests. For front desks, C.A.T.S would like to know their daily work records. In the daily work

records, the system will journalize the date and contents for the corresponding front desk staffs.

The rooms in the C.A.T.S learning center varies in sizes, room availability and room type. There

are no rooms share the same room number. C.A.T.S can track task, schedule date, start time and

end time in the Room Schedule. The system provides them a real-time room calendar. Room

classification has a unique room type name. For each room type, C.A.T.S wants to track total

number of rooms in each room type.

The system should also track the equipment in rooms, such as, electronics, desks, chairs, etc.

Administrators are responsible for keeping the room utility information up to date. The

equipment is also instantiated from equipment type. Equipment type has a type name,

description, and total number of equipment in each equipment type. Equipment id will track the

Equipment. C.A.T.S would also like to track the equipment type and equipment condition for an

equipment instance.

Chapter 2.

A revised version of your conceptual schema (ER diagram) along with a data dictionary

describing the semantics of each entity class. The data dictionary is the place to clarify units

(such as “salary refers to salary per month”) and abbreviations used. Cardinality (beyond

diagram) and other integrity constraints should also be listed in the dictionary.

Our ERD has 13 strong entities, 10 subclasses and 6 weak entities. All entities are listed below:

 Strong entities:

 Users

 Professors

 Courses

 Sports

 Bookings

 EquipmentType

 RoomEquipment

 Rooms

 Tutors

 Subjects

 UserType

 BookingType

 RoomClassification

Subclasses:

 Students

 Staff

 Counselors

 Administrators

 FrontDesks

5

 LearningSpecialists

 Events

 Reservations

 Training-Sessions

 Appointments

Weak entities:

 RoomSchedule

 TrainingRecord

 AttendenceRecord

 CourseSchedule

 DailyWorkRecord

 SkillLevel

Some key parts of our ERD are broken down and listed below:

The previous image describes our design of the two-level subclass for all users. For each user, no

matter what user type they are, the system will record their userID, usertype, FirstName,

LastName, Email, Password, PhoneNumber, State, Zipcode, City, StreetAddress. Users can be

classified in two categories, Student and Staff. There are four types of staff, Counselors,

Administrators, FrontDesks and LearningSpecialists. In our design, students and staff have

complete different power when entering the system. Students should not be able to modify the

system at all. They can only make reservation for their study session. Four types of staffs have

different power when making bookings. For example, only Administrators can create Events.

6

This image shows the design of the Create and CanCreate constrained entities. Some bookings

can only be created by certain user types. The system will make sure that each booking is

finished only by authorized users. For each booking, the system will record the BookingID,

semester, duration, booking type, status, bookingDate, bookingType, startTime and endTime.

The image above is a typing class in our ERD. The system is recording the RoomEquipment

located in each room. Equipment can be classified into different types, for example TV, chairs,

cable, tables, etc. This will help the department track the condition of equipment in each room.

7

Entire Revised ERD

Staff

P

Counselors FrontDesksAdministrators

Users

P

Bookings

P

AppointmentsReservations

Tutors

Participate

[1:1]

[0:M]

Subjects

Master

[1:1]

SkillLevel

Interact [1:1]

[0:M]

Events Training_Sessions

Associated With

Rooms

[0:M]

[1:1]

Form RoomClassificationRoomClassification[0:2]

EquipmentType

T

RoomEquipment

[0:M]

Contain

[1:1]

Participate

[1:1]

TrainingRecord

Professors

Teach

Take

[1:1]

[1:1]

[0:1]

Attendance Record

[0:M] Belong [1:1]

[1:1]

LearningSpecialists

Students

[1:1]

Students

[1:1]

TutorSkillLevel

TutorIDTutorID

TUTOR_FNAME
Academic

Standing

Training_Title

Contents

SubjectNameSubjectName

Description

BookingIDBookingID

StartTime

Duration

Booking

Type

Managed_Departments

StaffType

Topic

FName

Description

DETAILS

RoomType_NameRoomType_Name

UserIDUserID

Email

FirstName

Password

RoomType

RoomSize

Room_Availability

EquipmentIDEquipmentID

Condition

EquipmentType_NameEquipmentType_Name
Description

RoomNumberRoomNumber

Reservation_Detail

NUMOFROOM

EmployeeIDEmployeeID

NumOfEquip

Courses
Title

AcademicStanding

[0:1]

[0:1]

[0:M]

The New Booking & Scheduling

System of C.A.T.S. Academics

RoomSchedule

Hold [0:M][1:1]

Schedule_DateSchedule_Date Start_Time

End_Time

Assumption: Every student has a

record inside of STUDENTS entity

Record_IDRecord_ID

User

Type_ID

DailyWorkRecord

Journalize

[0:M]

[1:1]

DateDate Contents

BookingTypeBookingTypeUserTypeUserType

Comp

[0:M]

Comp

[0:M]

[1:1]

[1:1]

C

CanCreate

C

CanCreate

C

CanCreate[0:M] [0:M]

D

Creates

D

Creates

[0:M]

[1:1]

[0:M]

Event_Name

[1:1]

[1:1]

[0:M]

Usertype_IDUsertype_ID
BookingType_IDBookingType_IDNumberOf

Users
NumberOf

Bookings

CourseIDCourseID

SportType

InCharge

[1:M]

[1:M]

Sports

Expertise

[1:M]

[1:1]

guide

[1:M]

[1:1]

SportName

Coach

Status

Note: OnTime / Canceled / NoShow / Updated

EquipmentType

CourseSchedule

[1:M]

SectionSection

EndTime

Booking

Date

Semester

LastName

StreetAddress

City

State

ZipCode

PhoneNO

TUTOR_LNAME

Task

Department

LName

UniversityID

Num_Bad_Marks

Blocked

After displaying our detailed ERD, our team provide our conceptual data dictionary below.

8

Conceptual Data Dictionary

Schema Construct Construct Description Other Information

 ATTENDANCERECORD Weak entity class, to model attendance record

 Student Identifying user ID Foreign key, references UserID, in STUDENTS

 Course Identifying course ID for the record Foreign key, references CourseID, in COURSES

 AttendanceDetails Record the attendance details. e.g., 'Attended'. 'Didn't attend' Should not be NULL

 Record_ID Identidying the ID number of the record report

ASSOCIATEDWITH Relation representing the relationship ASSOCIATEDWITH

BELONG Relation representing the relationship BELONG

BOOKINGTYPE Composite entity class, to model booking type

BookingType_ID Identifying BookingType ID Identifying attribute

NumOfBookings Show the number of booking for the booking type default 0, a derived attribute

BOOKINGS Entity class, to model booking information

BookingID Identifing the booking ID Identifying Attribute

BookingType_ID List booking type of an booking. e.g., 'Event', 'Reservation', and more Should not be NULL

Status Record the status of Booking entity Should not be NULL

Room List the roomnumber for the booking Foreign key references ROOMS

Duration The duration of the booking Range from 0 - 2 hours exclusively

Semester Determin the semester of the Booking Should not be NULL

Start_Time Start time of the booking Should not be NULL

End_Time End time of the booking Should not be NULL

Booking_Date List name of the users that attend the booking Should not be NULL

UserID Identifying user ID of the Booking Foreign key references USERS

 RESERVATION Entity class, to model reservation

 BookingID Identifying the BookingID for the reservation Foreign key, references BOOKING

 ReservationDetails Record the reservation details Should not be NULL

 APPOINTMENTS Entity class, to model appointments information

 BookingID Iddentifying the appointment ID Foreign key references BOOKING

 TutorID Recording the name of tutor in the appointment Foreign key references USERS

CONTAIN Relationship representing the relationship CONTAIN

EVENTS Entity class, to model events information

BookingID Identify the ID number of the event Identifying Attribute

Topic List the topic of the event Should not be NULL

EventsName Record the name of the event Should not be NULL

EXPERTIES Relationship representing the relationship EXPERTIES

TRAININGSESSION Entity class, to model traning session information

BookingID Identyfying BookingID number Identifying Attribute

Training_Title Record the title of an training session Should not be NULL

CANCREATE Relationship representing the relationship cancreate

CREATES Relationship representing the relationship create

COURSES Entity class, to model course

Course_ID Identifying course ID Identifying Attribute

Title List the course title Should not be NULL

Description Describe the course material

Subject_Name Describe the name of the subject Foreign key, references SUBJECTS

COURSESCHEDULE Weak entity class, to model courseschedule record

Professor Identifying ID of the professor Foreign key references PROFESSORS

Course Identifying ID of the course Foreign key references COURSES

Section Identifying section number

 DAILYWORKRECORD Entity class, to model dailyworkrecord information

 FrontDesk_ID Identifying the UserID of the work record Identifying Attribute, Foreign key references USERS

 Record_Date Record the date of the work record Should not be NULL

 Contents Record the hour of work Range from 0 to 1

EQUIPMENTTYPE Entity class, to model room equipment type

EquipmentType_Name Identifying equipment type name Identifying Attribute

Description liset the equipment type name. e.g., chair, TV, table Should not be NULL

NumOfEquip List the total number of each equipment type range 1 - 99

FORM Relation representing the relationship FORM

HOLD Relation representing the relationship HOLD

INCHARGE Relation representing the relationship INCHARGE

INTERACT Relation representing the relationship INTERACT

JOURNALIZE Relation representing the relationship JOURNALIZE

GUIDE Relation representing the relationship GUIDE

MASTER Relation representing the relationship MASTER

PARTICIPATE Relation representing the relationship PARTICIPATE

PROFESSORS Entity class, to model professor

EmployeeID Identifying the Employee ID for the professor Identifying Attribute

FName List the first name of the professor Should not be NULL

LName List the last name of the professor Should not be NULL

Department List the course title the professor teach Should not be NULL

ROOMS Entity class, to model room

RoomNumber Identify the number of the room Identifying Attribute

Room_Availability List avalibility of the room. E.g., 'Y', 'N', 'L' Should not be NULL

RoomSize Record the size of the room range 0 - 50

9

ROOMCLASSIFICATION Entity class, to model room classification

RoomType_Name List the name of the equipments Should not be NULL

NumOfRoom Record the status of each equipment in room range 0 - 50

ROOMEQUIPMENT Entity class, to model room equipments

EquipmentID Identifying the equipment ID Identifying Attribute

Condition Record the condition of the equipments Should not be NULL

Equipment_Type Record the equipement type ID Foreign key references EQUIPMENTTYPE(EquipmentType_Name)

Room Identifying Room Number Foreign key references ROOMS(RoomNumber)

 ROOMSCHEDULE Weak entity class, to model room schedules

 RoomNumber Identifying the number of the room Foreign key references ROOMS(RoomNumber)

 Schedule_Date Record the date scheduled Partial Primary Key

 Start_Time Record the time the schedule starts Should not be NULL

 End_Time Record the time the schedule ends Should not be NULL

 Task Record the tasks for the schedule time

SUBJECTS Entity class, to model subject information

SubjectName List the subject name Identifying Attribute

Description Describe the subject

 SKILLLEVEL Weak entity class, to model skill level

 Subject Identifying the subject number with the skill level Foreign key, references SubkectID, in SUBJECTS

 Tutor Identifying the tutor ID with the skill level Foreign key, references TutorID, in TUTORS

 TutorSkillLevel Record the skill level of tutor. e.g., 'Good', 'Bad', 'Fine' Should not be NULL

SPORTS Entity class, to model sports information

SportName List the name of the sports Identifying Attribute

Counselor List the counselor ID of the sport Foreign key references USERS --> STAFF --> COUNSELORS(USERID)

Coach Identifying the coach of the sport Should not be NULL

 TRAININGRECORD Weak Entity, to model training record information

 T_Session Identifying the training session number Foreign key, references Trainingnumber, in TRAININGSESSION

 Tutor Identifying the tutor ID Foreign key, references TutorID, in TUTORS

 Contents Record Training Contents Should not be NULL

TUTORS Entity class, to model tutors information

TutorID Identifying tutor ID for the tutor Identifying Attribute

Tutor_FName List the first name of the tutor Should not be NULL

Tutor_LName List the last name of the tutor Should not be NULL

AcademicStanding Show the academic standing of the student, e.g., 'Freshman', 'Sophomore', 'Junior', 'Senior', 'Graduate', 'PHD' Should not be NULL

USERTYPE Composite entity, to model user type

UserType_ID Identifying ID of a user type Identifying Attribute

NumOfUsers Show the number of users for a certain type Derived attribute, range 1 - 100

USERS Entity class, to model users information

UserID List the ID of the users Identifying Attribute

FirstName Record the first name of users Should not be NULL

LastName Record the last name of users Should not be NULL

Email Record the email address of users Should not be NULL

PhoneNO Record the phone number of users Should not be NULL

Password Each user can select his or her own password Should not be NULL

StreetAddress Record the street address of users

City Record the city of users

State Record the state of the users

ZipCode Record the zipcode of the users

UniversityID Record the unversity id of each user Should not be NULL

UserType_ID Record the type of users Foreign key references CANCREATE(UserType_ID)

 STUDENTS Entity class, to model students information

 UserID List the user ID of the student Foreign key references USERS

 SportType List the type of sport the users play Foreign key references SPORTS(SportName)

 Couselor_ID Record the ID of the counselor Foreign key references USERS --> STAFF --> COUNSELORS(USERID)

Num_Bad_Marks Record the total number bad booking records

Blocked Record the blocking status of each student based on his/her Num_Bad_Marks

 Academic_Standing Record the academic standing of the user Should not be NULL

 STAFF Entity class, to model staff information

 UserID List the user ID of the staff Foreign key references USERS

 StaffType List the staff type Foreign key references CANCREATE(UserType_ID)

 ADMINISTRATORS Entity class, to model administrators information

 UserID List the user ID of the administrators Foreign key references USERS --> STAFF(UserID)

 Managed_Departments List the department the administrator manages Should not be NULL

 COUNSELORS Entity class, to model counselors information

 UserID List the user ID of the counselors Foreign key references USERS --> STAFF(UserID)

 LEARNINGSPECIALISTS Entity class, to model learning specialist information

 UserID List the user ID of the learning specialists Foreign key references USERS --> STAFF(UserID)

 FRONTDESKS Entity class, to model front desk information

 UserID List the user ID of the frontdesk worker Foreign key references USERS --> STAFF(UserID)

UPDATE Relation representing the relationship UPDATE

TAKE Relation representing the relationship TAKE

TEACH Relation representing the relationship TEACH

10

Chapter 3.

In our system, we have a constraining relationship: only authorized user(s) can make

corresponding booking(s) in our system. This relationship was also discussed in Chapter 2.

Different attributes in entities has different datatypes, based on length of the attributes. There are

some value constraints in our system. For example, the system accepts email address ups to 50

characters, in case of extremely long email addresses. Users can have userID up to 16 characters,

Phone numbers have 12 characters, no decimal points. Duration of a booking can range from 0 to

4 hours.

Some defaulted values are set on our system. For example, the default numofuser displayed in

usertype is zero. Each time a user is classified into a user type, the numofuser will go up by 1.

There are also some CHECK constraints existing in our system. For instance, the

AcademicStanding of Tutors only can be one of the Freshman, Sophomore, Junior, Senior,

Graduate or PHD. The Tutors’ skill level is evaluated and recorded in our system as well. The

system will record them as ‘Good’, ‘Bad’ or ‘Fine’. The Null-value check will be realized

through our system as well.

Below, we offer the detailed normalization results, following with our logical data dictionary.

Translated Relations (Normalization)

Translated Relations

ATTENDANCERECORD (Student, Course, Record_ID)

BOOKINGTYPE (BookingType_ID, NumOfBookings)

BOOKINGS (BookingID, BookingType_ID, Status, Room, Duration, Semester, Start_Time, End_Time, Booking_Date, User_ID)

RESERVATIONS (BookingID, Reservation_Detail)

APPOINTMENTS (BookingID, TutorID)

EVENTS (BookingID, Topic, Event_Name)

TRAINING_SESSIONS (BookingID, Training_Title)

CANCREATE (BookingType_ID, UserType_ID)

COURSES (Course_ID, Title, Description, SubjectName)

COURSESCHEDULE (Professor, Course, Section)

DAILYWORKRECORD (FrontDesk_ID, Record_Date, Contents)

EQUIPMENTTYPE (EquipmentType_Name, Description, NumOfEquip)

FORM (Room, Room_Type)

INCHARGE (Subject, LearningSpecialist)

PROFESSORS (EmployeeID, FName, LName, Department)

ROOMS (RoomNumber, Room_Availability, RoomSize)

ROOMCLASSIFICATION (RoomType_Name, NumOfRoom)

ROOMEQUIPMENT (EquipmentID, Condition, Equipment_Type, Room)

ROOMSCHEDULE (RoomNumber, Schedule_Date, Start_Time, End_Time, Task)

SUBJECTS (SubjectName, Description)

SKILLLEVEL (Subject, Tutor, TutorSkillLevel)

SPORTS (SportName, Counselor, Coach)

TRAININGRECORD (T_Session, Tutor, Contents)

TUTORS (TutorID, Tutor_FName, Tutor_LName, AcademicStanding)

USERTYPE (UserType_ID, NumOfUsers)

USERS (UserID, FirstName, LastName, Email, PhoneNO, Password, StreetAddress, City, State, ZipCode, UniversityID, UserType_ID)

STUDENTS (UserID, SportType, Counselor_ID, Num_Bad_Marks, Blocked, Academic_Standing)

STAFF (UserID, StaffType)

ADMINISTRATORS (UserID, Managed_Departments)

COUNSELORS (UserID)

LEARNINGSPECIALISTS (UserID)

FRONTDESKS (UserID)

11

Relational Data Dictionary (*Display all constraints in detail)

Schema Construct Data Type Constraint

 ATTENDANCERECORD

 Student varchar2 (16) Foreign key references USERS --> STUDENTS(UserID)

 Course varchar2 (10) Foreign key references COURSES(Course_ID)

 Record_ID varchar2 (10) Should not be NULL

 Details varchar2 (100)

BOOKINGTYPE

BookingType_ID varchar2 (20) Primary Key

NumOfBookings num(7,0) default 0, a derived attribute

BOOKINGS

BookingID varchar2 (16) Primary Key

BookingType_ID varchar2 (20) Foreign key references CanCreate relationship class

Status varchar2 (9) CHECK (Status IN ('OnTime','Cancelled', 'NoShow', 'Updated'))

Room varchar2 (6) Foreign key references ROOMS(RoomNumber)

Duration number (1,1) CHECK (Duration BETWEEN 0 AND 4)

Semester varchar (12) Should not be NULL

Start_Time DATE Should not be NULL

End_Time DATE Should not be NULL

Booking_Date DATE

UserID varchar2 (16) Foreign key references USERS

 RESERVATIONS

 BookingID varchar2 (16) Foreign key references BOOKINGS

 Reservation_Detail varchar2 (50)

 APPOINTMENTS

 BookingID varchar2 (16) Foreign key references BOOKINGS

 TutorID varchar2 (8) Foreign key references TUTORS

 EVENTS

 BookingID varchar2 (16) Foreign key references BOOKINGS

 Topic varchar2 (20)

 Event_Name varchar2 (20) Should not be NULL

 TRAINING_SESSIONS

 BookingID varchar2 (16) Foreign key references BOOKINGS

 Training_Title varchar2 (20)

CANCREATE

BookingType_ID varchar2 (20) Foreign Key references BOOKINGTYPE

UserType_ID varchar2 (20) Foreign Key references USERTYPE

COURSES

Course_ID varchar2 (10) Primary Key

Title varchar2 (20) unique

Description varchar2 (50) Should not be NULL

SubjectName varchar2 (20) Foreign key references SUBJECTS

COURSESCHEDULE

Professor varchar2 (16) Foreign key references PROFESSORS

Course varchar2 (10) Foreign key references COURSES

Section varchar2 (3) Partial Primary Key

 DAILYWORKRECORD

 FrontDesk_ID varchar2 (16) Foreign key references USERS --> STAFF --> FRONTDESKS

 Record_Date DATE Partial Primary Key

 Contents varchar2 (50) Should not be NULL

 FD: FrontDesk_ID, Record_Date --> Contents

Relation representing the weak entity class DAILYWORKRECORD

 Primary Key Constraint: FrontDesk_ID, Record_Date

 FD: Professor, Course, SECNO --> Professor, Course, Section

Primary Key Constraint: Professor, Course, Section

Relation representing the weak entity class ATTENDANCERECORD

 Primary Key Constraint: Student, Course, Record_ID

 FD: Student, Course, Record_ID --> Details

Relation representing the constraining relationship CANCREATE

 FD: BookingType_ID, UserType_ID --> BookingType_ID, UserType_ID

 Primary Key Constraint: BookingType_ID, UserType_ID

Relation representing the entity class COURSES

 FD: Course_ID --> Title, Description, SubjectName

Relation representing the weak entity class COURSESCHEDULE

Relation representing the entity subclass EVENTS

 Primary Key Constraint: BookingID

 FD: BookingID --> Event_Name, Topic

Relation representing the entity subclass TRAINING_SESSIONS

 Primary Key Constraint: BookingID

 FD: BookingID --> Training_Title

Relation representing the entity subclass RESERVATION

 Primary Key Constraint: BookingID

 FD: BookingID --> Reservation_Detail

Relation representing the entity subclass APPOINTMENTS

 Primary Key Constraint: BookingID

 FD: BookingID --> TutorID

Relation representing the entity class BOOKINGTYPE

 FD: BookingType_ID --> NumOfBookings

Relation representing the entity class BOOKINGS

 Primary Key Constraint: BookingID

 FD: BookingID --> BookingType_ID, Status, Room, Duration, Semester, Start_Time, End_Time, Booking_Date, UserID

12

EQUIPMENTTYPE

EquipmentType_Name varchar2 (16) Primary Key

Description varchar2 (20) Should not be NULL

NumOfEquip number (3,0) Default 0, a derived attribute

FORM

Room varchar2 (6) Foreign Key references ROOMS(RoomNumber)

Room_Type varchar2 (16) Foreign Key references ROOMCLASSIFICATION(RoomType_Name)

INCHARGE

Subject varchar2 (20) Foreign Key references SUBJECTS

LearningSpecialist varchar2 (16) Foreign Key references USERS --> STAFF --> LEARNINGSPECIALISTS

PROFESSORS

EmployeeID varchar2 (16) Primary Key

FName varchar2 (10) Should not be NULL

LName varchar2 (10) Should not be NULL

Department varchar2 (20)

ROOMS

RoomNumber varchar2 (6) Primary Key

Room_Availability varchar2 (1) CHECK (Room_Availabiblity IN ('Y', 'N', 'L'))

RoomSize number (3) CHECK (RoomSize > 0)

ROOMCLASSIFICATION

RoomType_Name varchar2 (16) Primary Key

NumOfRoom number (2,0) Default 0, a derived attribute

ROOMEQUIPMENT

EquipmentID varchar2 (16) Primary Key

Condition varchar2 (50) Should not be NULL

Equipment_Type varchar2 (16) Foreign key references EQUIPMENTTYPE(EquipmentType_Name)

Room varchar2 (6) Foreign key references ROOMS(RoomNumber)

 ROOMSCHEDULE Relation representing the weak entity class SCHEDULE

 RoomNumber varchar2 (6) Foreign key references ROOMS(RoomNumber)

 Schedule_Date DATE Partial Primary Key

 Start_Time DATE Should not be NULL

 End_Time DATE Should not be NULL

 Task varchar2 (60)

SUBJECTS

SubjectName varchar2 (20) Primary Key

Description varchar2 (50)

 SKILLLEVEL

 Subject varchar2 (20) Foreign key references SUBJECTS(SubjectName)

 Tutor varchar2 (8) Foreign key references TUTORS(TutorID)

 TutorSkillLevel varchar2 (50) CHECK (TutorSkillLevel IN ('Good', 'Bad', 'Fine'))

SPORTS

SportName varchar2 (25) Primary Key

Counselor varchar2 (16) Foreign key references USERS --> STAFF --> COUNSELORS(USERID)

Coach varchar2 (30) Should not be NULL

 TRAININGRECORD

 T_Session varchar2 (16) Foreign key references TRAINING_SESSIONS(BookingID)

 Tutor varchar2 (8) Foreign key references TUTORS(TutorID)

 Contents varchar2 (100)

TUTORS

TutorID varchar2 (8) Primary Key

Tutor_FName varchar2 (10) Should not be NULL

Tutor_LName varchar2 (10) Should not be NULL

AcademicStanding varchar2 (10) CHECK (AcademicStanding IN ('Freshman', 'Sophomore', 'Junior', 'Senior', 'Graduate', 'PHD'))

 Primary Key Constraint: T_Session, Tutor

 FD: T_Session, Tutor --> Contents

Relation representing the entity class TUTORS

 FD: TutorID --> Tutor_FName, Tutor_LName, AcademicStanding

Relation representing the entity class PROFESSORS

 FD: EmployeeID --> FName, LName, Department

 Primary Key Constraint: Subject, Tutor

 FD: Subject, Tutor --> TutorSkillLevel

Relation representing the entity class SPORTS

 FD: SportName --> Counselor, Coach

Relation representing the weak entity class TRAININGRECORD

 FD: EquipmentID --> Condition, Equipment_Type, Room

 Primary Key Constraint: RoomNumber, Schedule_Date

 FD: RoomNumber, Schedule_Date --> Start_Time, End_Time, Task

Relation representing the entity class SUBJECTS

 FD: SubjectName --> Description

Relation representing the weak entity class SKILLLEVEL

 * Room number won't be changed, usually kept same in each semester.

 FD: RoomNumber --> Room_Availability, RoomSize

Relation representing the entity class ROOMCLASSIFICATION

 FD: RoomType_Name --> NumOfRoom

Relation representing the entity class ROOMEQUIPMENT

Relation representing the entity class ROOMS

Relation representing the entity class EQUIPMENTTYPE

 FD: EquipmentType_Name --> Description, NumOfEquip

Relation representing the relationship FORM

 Primary Key Constraint: Room, Room_Type

 FD: Room, Room_Type --> Room, Room_Type

Relation representing the relationship INCHARGE

 Primary Key Constraint: Subject, LearningSpecialists

 FD: Subject, LearningSpecialists --> Subject, LearningSpecialists

13

After finishing our logical design, we started our SQL work. Below, we attached our database

table script, including all contraints, together with our triggers (code only).

SQL statements to create tables and define constraints

--sequences

-- Drop sequences code:

drop sequence pk_attendancerecord;

-- PK sequence.

create sequence pk_attendancerecord start with 1000001 maxvalue 1999999 increment by 1;

-- Drop sequences code:

drop sequence pk_users;

-- PK sequence.

USERTYPE

UserType_ID varchar2 (20) Primary Key

NumOfUsers num(4,0) default 0, a derived attribute

USERS

UserID varchar2 (16) Primary Key

FirstName varchar2 (20) Should not be NULL

LastName varchar2 (20) Should not be NULL

Email varchar2 (50) Should not be NULL

PhoneNO number (12, 0) Should not be NULL

Password varchar2 (12) Should not be NULL

StreetAddress varchar2 (50)

City varchar2 (20)

State varchar2 (20)

ZipCode varchar2 (20)

UniversityID int Unique, and Should not be NULL

UserType_ID varchar2 (20) Foreign key references CANCREATE(UserType_ID)

 STUDENTS

 UserID varchar2 (16) Foreign key references USERS

 SportType varchar2 (25) Foreign key references SPORTS(SportName)

 Couselor_ID varchar2 (16) Foreign key references USERS --> STAFF --> COUNSELORS(USERID)

Num_Bad_Marks number (7) Default value as 0

Blocked char (1) Default value as 'N', and CHECK (Blocked IN ('Y', 'N'))

 Academic_Standing char (10) Should not be NULL

 STAFF

 UserID varchar2 (16) Foreign key references USERS

 StaffType varchar2 (20) Foreign key references CANCREATE(UserType_ID)

 ADMINISTRATORS

 UserID varchar2 (16) Foreign key references USERS --> STAFF(UserID)

 Managed_Departments varchar2 (20)

 COUNSELORS

 UserID varchar2 (16) Foreign key references USERS --> STAFF(UserID)

 LEARNINGSPECIALISTS

 UserID varchar2 (16) Foreign key references USERS --> STAFF(UserID)

 FRONTDESKS

 UserID varchar2 (16) Foreign key references USERS --> STAFF(UserID)

 FD: UserID --> UserID

Relation representing the entity subclass COUNSELORS

 FD: UserID --> UserID

Relation representing the entity subclass LEARNINGSPECIALISTS

 FD: UserID --> UserID

Relation representing the entity subclass FRONTDESKS

 Primary Key Constraint: UserID

 Primary Key Constraint: UserID

 Primary Key Constraint: UserID

 FD: UserID --> Managed_Departments

Relation representing the entity class USERTYPE

 FD: UserType_ID --> NumOfUsers

Relation representing the entity class USERS

 FD: UserID --> FirstName, LastName, Email, PhoneNO, Password, StreetAddress, City, State, ZipCode, UniversityID, UserType_ID

Relation representing the entity subclass STUDENTS

 FD: UserID --> SportType, Counselor_ID, Num_Bad_Marks, Blocked, Academic_Standing

Relation representing the entity subclass STAFF

 FD: UserID --> StaffType

Relation representing the entity subclass ADMINISTRATORS

 Primary Key Constraint: UserID

 Primary Key Constraint: UserID

 Primary Key Constraint: UserID

14

create sequence pk_users start with 10000001 maxvalue 19999999 increment by 1;

-- Drop sequences code:

drop sequence pk_bookings;

-- PK sequence.

create sequence pk_bookings start with 100000000001 maxvalue 199999999999 increment by 1;

-- Drop sequences code:

drop sequence pk_roomequipment;

-- PK sequence.

create sequence pk_roomequipment start with 100000000001 maxvalue 199999999999

increment by 1;

-- USERTYPE

-- No PK trigger Needed.

drop table USERTYPE cascade constraints;

CREATE TABLE USERTYPE

 (USERTYPE_ID VARCHAR2(20) constraint USERTYPE_pk primary key,

 NUMOFUSERS number(4, 0) DEFAULT 0 -- JUST give default ZERO, use trigger to

automatically update after insert/update later

);

-- BOOKINGTYPE

-- No PK Trigger Needed.

drop table BOOKINGTYPE cascade constraints;

CREATE TABLE BOOKINGTYPE

 (BOOKINGTYPE_ID VARCHAR2(20) constraint BOOKINGTYPE_pk primary key,

 NUMOFBOOKINGS number(7, 0) DEFAULT 0 -- JUST give default ZERO, use

trigger to automatically update after insert/update later

);

-- CANCREATE: constraining relationship

-- No PK Trigger Needed.

drop table CANCREATE cascade constraints;

CREATE TABLE CANCREATE

15

 (BOOKINGTYPE_ID VARCHAR2(20) references

BOOKINGTYPE(BOOKINGTYPE_ID) ON DELETE CASCADE,

 USERTYPE_ID VARCHAR2(20) references USERTYPE(USERTYPE_ID) ON

DELETE CASCADE,

 constraint CANCREATE_pk primary key(BOOKINGTYPE_ID, USERTYPE_ID)

);

-- USERS

drop table USERS cascade constraints;

CREATE TABLE USERS

 (USERID varchar2(16) constraint USERS_pk primary key,

 universityid INT unique not null,

 PASSWORD VARCHAR2(255) not null,

 FIRSTNAME VARCHAR2(20) not null,

 LASTNAME VARCHAR2(20) not null,

 STREETADDRESS VARCHAR2(50),

 CITY VARCHAR2(20),

 STATE VARCHAR2(20),

 ZIPCODE VARCHAR2(20),

 EMAIL VARCHAR2(50) not null,

 PHONENO NUMBER(10,0) not null,

 USERTYPE_ID VARCHAR2(20) references USERTYPE(USERTYPE_ID) ON

DELETE cascade

);

-- Trigger to assign primary keys

create or replace trigger assign_users_pk

BEFORE INSERT

ON USERS

FOR EACH ROW

DECLARE

begin

:new.userid := pk_users.nextval;

end;

/

CREATE OR REPLACE TRIGGER update_user_type_counts

--- runs only once for any of these query types, not once for each row.

16

AFTER INSERT OR UPDATE OR DELETE

on USERS

DECLARE

---- cursor to find usertypes and counts from their table

CURSOR c1 IS

select * from usertype

for update;

BEGIN

---- go through each usertype and update the count

for x in c1

loop

update usertype

---- for the specific usertype, count how many records are now there.

set numofusers = (select count(*) from users where usertype_id = x.usertype_id)

---- update the row that corresponds to the current one in the cursor/loop.

where current of c1;

end loop;

END;

/

drop table REFKEYMAPPING cascade constraints;

CREATE TABLE REFKEYMAPPING(

UNIVERSITYID INT references users(universityid) ON DELETE cascade,

usertype_id varchar(20) references usertype(usertype_id) on delete cascade,

refkey varchar(255),

primary key (universityid, usertype_id, refkey)

);

-- ROOMS

-- No PK Trigger Needed.

drop table ROOMS cascade constraints;

CREATE TABLE ROOMS

 (ROOMNUMBER VARCHAR2(6) constraint ROOMNUMBER_pk primary key,

 ROOMSIZE number(3),

 ROOM_AVAILABILITY VARCHAR2(1),

 -- 'L' means 'Locked'

 constraint rooms_chk CHECK (ROOMSIZE > 0 AND ROOM_AVAILABILITY IN

('Y', 'N', 'L'))

);

17

-- BOOKINGS

drop table BOOKINGS cascade constraints;

CREATE TABLE BOOKINGS

 (BOOKINGID varchar2(16) constraint BOOKINGS_pk primary key,

 BOOKINGTYPE_ID VARCHAR2(20) references BOOKINGTYPE(BOOKINGTYPE_ID)

ON DELETE cascade,

 STATUS VARCHAR2(9),

 constraint STATUS_chk CHECK (STATUS IN ('OnTime','Cancelled', 'NoShow',

'Updated')),

 ROOM VARCHAR2(6) REFERENCES ROOMS(ROOMNUMBER) ON DELETE cascade,

 DURATION NUMBER(1) CHECK (DURATION BETWEEN 0 AND 4),

 SEMESTER VARCHAR2(12) not null,

 START_TIME DATE not null,

 END_TIME DATE not null,

 BOOKING_DATE DATE,

 USERID varchar2(16) references USERS(USERID) ON DELETE cascade

);

-- Trigger to assign primary keys

create or replace trigger assign_bookings_pk

BEFORE INSERT

ON BOOKINGS

FOR EACH ROW

DECLARE

begin

:new.BOOKINGID := pk_bookings.nextval;

end;

/

CREATE OR REPLACE TRIGGER update_booking_type_counts

--- runs only once for any of these query types, not once for each row.

AFTER INSERT OR UPDATE OR DELETE

on bookings

DECLARE

---- cursor to find bookingtypes and counts from their table

CURSOR c1 IS

select * from bookingtype

for update;

18

BEGIN

---- go through each bookingtype and update the count

for x in c1

loop

update bookingtype

---- for the specific bookingtype, count how many records are now there.

set numofbookings = (select count(*) from bookings where BOOKINGTYPE_ID =

x.BOOKINGTYPE_ID)

---- update the row that corresponds to the current one in the cursor/loop.

where current of c1;

end loop;

END;

/

-- STAFF

-- No PK Trigger needed.

drop table STAFF cascade constraints;

CREATE TABLE STAFF

 (USERID varchar2(16) references USERS(USERID) ON DELETE cascade,

 STAFFTYPE VARCHAR2(20) references USERTYPE(USERTYPE_ID) ON DELETE

cascade,

 PRIMARY KEY (USERID)

);

-- COUNSELORS

-- No PK Trigger needed.

drop table COUNSELORS cascade constraints;

CREATE TABLE COUNSELORS

 (USERID varchar2(16) references STAFF(USERID) ON DELETE cascade,

 PRIMARY KEY (USERID)

);

-- SPORTS

-- No PK Trigger needed.

drop table SPORTS cascade constraints;

CREATE TABLE SPORTS

 (SPORTNAME VARCHAR2(25) constraint SPORTS_pk primary key,

 COUNSELOR varchar2(16) references COUNSELORS(USERID) ON DELETE cascade,

 COACH VARCHAR2(30) not null

);

19

-- STUDENT

-- No PK Trigger needed.

drop table STUDENTS cascade constraints;

CREATE TABLE STUDENTS

 (USERID varchar2(16) references USERS(USERID) ON DELETE cascade,

 ACADEMIC_STANDING char(10) not null,

 SPORTTYPE VARCHAR2(25) references SPORTS(SPORTNAME) ON DELETE

cascade,

 COUNSELOR_ID varchar2(16) references COUNSELORS(USERID) ON DELETE

cascade,

 BLOCKED varchar(1) default 'N',

 NUM_BAD_MARKS INT default 0,

 constraint num_bad_check CHECK (num_bad_marks >= 0),

 constraint block_check CHECK (BLOCKED IN ('Y', 'N')),

 PRIMARY KEY (USERID)

);

-- LEARNINGSPECIALISTS

-- No PK Trigger needed.

drop table LEARNINGSPECIALISTS cascade constraints;

CREATE TABLE LEARNINGSPECIALISTS

 (USERID varchar2(16) references STAFF(USERID) ON DELETE cascade,

 PRIMARY KEY (USERID)

);

-- ADMINISTRATORS

-- No PK Trigger needed.

drop table ADMINISTRATORS cascade constraints;

CREATE TABLE ADMINISTRATORS

 (USERID VARCHAR(15) references STAFF(USERID) ON DELETE cascade,

 MANAGED_DEPARTMENTS VARCHAR2(20),

 PRIMARY KEY (USERID)

);

-- FRONTDESKS

-- No PK Trigger needed.

drop table FRONTDESKS cascade constraints;

CREATE TABLE FRONTDESKS

20

 (USERID varchar2(16) references STAFF(USERID) ON DELETE cascade,

 PRIMARY KEY (USERID)

);

-- DAILYWORKRECORD

-- No PK Trigger needed.

drop table DAILYWORKRECORD cascade constraints;

CREATE TABLE DAILYWORKRECORD

 (FRONTDESK_ID varchar2(16) references FRONTDESKS(USERID) ON DELETE cascade,

 RECORD_DATE DATE,

 CONTENTS VARCHAR2(50),

 PRIMARY KEY (FRONTDESK_ID, RECORD_DATE)

);

-- RESERVATIONS

-- No PK Trigger needed.

drop table RESERVATIONS cascade constraints;

CREATE TABLE RESERVATIONS

 (BOOKINGID varchar2(16) references BOOKINGS(BOOKINGID) ON DELETE cascade,

 PRIMARY KEY (BOOKINGID),

 RESERVATION_DETAIL VARCHAR2(50)

);

-- TUTORS

-- No PK Trigger needed.

drop table TUTORS cascade constraints;

CREATE TABLE TUTORS

(TUTORID VARCHAR2(8) constraint TUTORID_pk primary key,

 TUTOR_FNAME VARCHAR2(10) not null,

 TUTOR_LNAME VARCHAR2(10) not null,

 SUBJECT VARCHAR(20) references SUBJECTS(SUBJECTNAME),

 ACADEMICSTANDING VARCHAR2(10),

 constraint ACADEMICSTANDING_chk CHECK (ACADEMICSTANDING IN

('Freshman', 'Sophomore', 'Junior', 'Senior', 'Graduate', 'PHD'))

);

21

-- APPOINTMENTS

-- No PK Trigger needed.

drop table APPOINTMENTS cascade constraints;

CREATE TABLE APPOINTMENTS

 (BOOKINGID varchar2(16) references BOOKINGS(BOOKINGID) ON DELETE cascade,

 PRIMARY KEY (BOOKINGID),

 TUTORID VARCHAR2(8) references TUTORS(TUTORID) ON DELETE cascade

);

-- EVENTS

-- No PK Trigger needed.

drop table EVENTS cascade constraints;

CREATE TABLE EVENTS

 (BOOKINGID varchar2(16) references BOOKINGS(BOOKINGID) ON DELETE cascade,

 PRIMARY KEY (BOOKINGID),

 EVENT_NAME VARCHAR2(20) not null,

 TOPIC VARCHAR2(20)

);

-- TRAINING_SESSIONS

-- No PK Trigger needed.

drop table TRAINING_SESSIONS cascade constraints;

CREATE TABLE TRAINING_SESSIONS

 (BOOKINGID varchar2(16) references BOOKINGS(BOOKINGID) ON DELETE cascade,

 PRIMARY KEY (BOOKINGID),

 TRAINING_TITLE VARCHAR2(20)

);

-- PROFESSORS

-- No PK Trigger needed.

drop table PROFESSORS cascade constraints;

CREATE TABLE PROFESSORS

 (EMPLOYEEID varchar2(16) constraint PROFESSORS_pk primary key,

 FNAME VARCHAR2(10) not null,

 LNAME VARCHAR2(10) not null,

 DEPARTMENT VARCHAR2(20)

);

22

-- SUBJECTS

-- No PK Trigger needed.

drop table SUBJECTS cascade constraints;

CREATE TABLE SUBJECTS

 (SUBJECTNAME VARCHAR2(20) constraint SUBJECTS_pk primary key,

 DESCRIPTION VARCHAR2(50)

);

-- COURSES

-- No PK Trigger needed.

drop table COURSES cascade constraints;

CREATE TABLE COURSES

 (COURSE_ID VARCHAR2(10) constraint COURSES_pk primary key,

 TITLE VARCHAR2(20),

 DESCRIPTION VARCHAR2(50),

 SUBJECT VARCHAR2(20) references SUBJECTS(SUBJECTNAME) ON DELETE

cascade

);

-- COURSESCHEDULE

-- No PK Trigger needed.

drop table COURSESCHEDULE cascade constraints;

CREATE TABLE COURSESCHEDULE

 (PROFESSOR varchar2(16) references PROFESSORS(EMPLOYEEID) ON DELETE

cascade,

 COURSE VARCHAR2(10) references COURSES(COURSE_ID) ON DELETE

cascade,

 SECTION VARCHAR2(3) not null,

 PRIMARY KEY (PROFESSOR, COURSE, SECTION)

);

-- ATTENDANCERECORD

drop table ATTENDANCERECORD cascade constraints;

CREATE TABLE ATTENDANCERECORD

 (STUDENT varchar2(16) references STUDENTS(USERID) ON DELETE cascade,

 COURSE VARCHAR2(10) references COURSES(COURSE_ID) ON DELETE

cascade,

 RECORD_ID VARCHAR2(10) not null,

 DETAILS VARCHAR2(100),

23

 PRIMARY KEY (RECORD_ID, STUDENT, COURSE)

);

-- Trigger to assign primary keys

create or replace trigger assign_attendancerecord_pk

BEFORE INSERT

ON ATTENDANCERECORD

FOR EACH ROW

DECLARE

begin

:new.record_id := pk_attendancerecord.nextval;

end;

/

-- EQUIPMENTTYPE

-- No PK Trigger needed.

drop table EQUIPMENTTYPE cascade constraints;

CREATE TABLE EQUIPMENTTYPE

 (EQUIPMENTTYPE_NAME varchar2(16) constraint EQUIPMENTTYPE_pk primary

key,

 NUMOFEQUIP number(3, 0) DEFAULT 0 -- JUST give default ZERO, use trigger to

automatically update after insert/update later

);

-- ROOMEQUIPMENT

drop table ROOMEQUIPMENT cascade constraints;

CREATE TABLE ROOMEQUIPMENT

 (EQUIPMENT_ID varchar2(16) constraint ROOMEQUIPMENT_pk primary key,

 EQUIPMENTCONDITION VARCHAR2(50) not null,

 EQUIPMENT_TYPE varchar2(16) references

EQUIPMENTTYPE(EQUIPMENTTYPE_NAME),

 ROOM VARCHAR2(6) REFERENCES ROOMS(ROOMNUMBER) ON DELETE cascade

);

24

-- Trigger to assign primary keys

create or replace trigger assign_roomequipment_pk

BEFORE INSERT

ON ROOMEQUIPMENT

FOR EACH ROW

DECLARE

begin

:new.EQUIPMENT_ID := pk_roomequipment.nextval;

end;

/

-- ROOMCLASSIFICATION

-- No PK Trigger Needed

drop table ROOMCLASSIFICATION cascade constraints;

CREATE TABLE ROOMCLASSIFICATION

 (ROOMTYPE_NAME varchar2(16) constraint ROOMCLASSIFICATION_pk primary

key,

 NUMOFROOM number(2,0) DEFAULT 0 -- JUST give default ZERO, use trigger to

automatically update after insert/update later

);

-- FORM: relationship table

-- No PK Trigger Needed

drop table FORM cascade constraints;

CREATE TABLE FORM

 (ROOM VARCHAR2(6) REFERENCES ROOMS(ROOMNUMBER) ON DELETE

cascade,

 ROOM_TYPE varchar2(16) references ROOMCLASSIFICATION(ROOMTYPE_NAME)

ON DELETE cascade,

 PRIMARY KEY (ROOM, ROOM_TYPE)

);

-- ROOMSCHEDULE

-- No PK Trigger Needed

drop table ROOMSCHEDULE cascade constraints;

CREATE TABLE ROOMSCHEDULE

25

 (ROOMNUMBER VARCHAR2(6) references ROOMS(ROOMNUMBER) ON

DELETE cascade,

 SCHEDULE_DATE DATE not null,

 START_TIME DATE not null,

 END_TIME DATE not null,

 TASK VARCHAR2(60),

 PRIMARY KEY (ROOMNUMBER, SCHEDULE_DATE)

);

-- TRAININGRECORD

-- No PK Trigger Needed

drop table TRAININGRECORD cascade constraints;

CREATE TABLE TRAININGRECORD

 (T_SESSION varchar2(16) references TRAINING_SESSIONS(BOOKINGID) ON

DELETE cascade,

 TUTOR VARCHAR2(8) references TUTORS(TUTORID) ON DELETE cascade,

 CONTENTS VARCHAR2(100),

 PRIMARY KEY (T_SESSION, TUTOR)

);

--SKILLLEVEL

-- No PK Trigger Needed

drop table SKILLLEVEL cascade constraints;

CREATE TABLE SKILLLEVEL

 (TUTOR VARCHAR2(8) references TUTORS(TUTORID) ON DELETE cascade,

 SUBJECT VARCHAR2(20) references SUBJECTS(SUBJECTNAME) ON DELETE

cascade,

 TutorSkillLevel VARCHAR2(4),

 constraint TutorSkillLevel_chk CHECK (TutorSkillLevel IN ('Good', 'Bad', 'Fine'))

);

--INCHARGE: relationship table between SUBJECTS and LEARNINGSPECIALISTS

-- No PK Trigger Needed

drop table INCHARGE cascade constraints;

CREATE TABLE INCHARGE

 (SUBJECT VARCHAR2(20) references SUBJECTS(SUBJECTNAME) ON DELETE

cascade,

 LEARNINGSPECIALIST varchar2(16) references STAFF(USERID) ON DELETE cascade,

26

 primary key(SUBJECT, LEARNINGSPECIALIST)

);

commit;

Triggers and Procedures (code only) related to the tables

CREATE OR REPLACE TRIGGER update_user_type_counts

AFTER INSERT OR UPDATE OR DELETE

on USERS

DECLARE

CURSOR c1 IS

select * from usertype

where usertype_id = 'STAFF' OR usertype_id = 'STUDENT'

for update;

CURSOR c2 IS

select * from usertype

where usertype_id <> 'STAFF' AND usertype_id <> 'STUDENT'

for update;

BEGIN

for x in c1

loop

update usertype

set numofusers = (select count(*) from users where usertype_id = x.usertype_id)

where current of c1;

end loop;

for x in c2

loop

update usertype

set numofusers = (select count(*) from staff where stafftype = x.usertype_id)

where current of c2;

end loop;

END;

/

27

CREATE OR REPLACE TRIGGER delete_refkey_new_user

AFTER INSERT

on USERS

for each row

BEGIN

delete from refkeymapping where

refkeymapping.universityID = :new.universityID;

END;

/

/* 5 updateable view for users

 These work with a trigger to allow us to simplify adding users (who are split across multiple

tables). */

/* STUDENTS */

drop view view_students_updateable;

create view view_students_updateable

AS select * from users natural join STUDENTS;

create or replace trigger insert_stu_view

instead of insert

on view_students_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into students(USERID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

values(x,

:new.ACADEMIC_STANDING, :new.SPORTTYPE, :new.COUNSELOR_ID);

end;

/

28

/* END STUDENTS */

/* LEARNING SPECIALISTS */

create or replace view view_learningspecs_updateable

AS select * from users natural join LEARNINGSPECIALISTS natural join staff;

create or replace trigger insert_learningspec_view

instead of insert

on view_learningspecs_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into LEARNINGSPECIALISTS(userid) values(x);

end;

/

/* END LEARNING SPECIALISTS */

/* ADMINISTRATORS */

create or replace view view_administrators_updateable

AS select * from users natural join staff natural join ADMINISTRATORS;

create or replace trigger insert_admins_view

instead of insert

on view_administrators_updateable

for each row

29

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into ADMINISTRATORS(userid,MANAGED_DEPARTMENTS)

values(x,:new.MANAGED_DEPARTMENTS);

end;

/

/* END ADMINISTARTORS */

/* FRONTDESKS */

create or replace view view_frontdesks_updateable

AS select * from users natural join staff natural join FRONTDESKS;

create or replace trigger insert_frontdesks_view

instead of insert

on view_frontdesks_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

30

RETURNING USERID INTO x;

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into FRONTDESKS(userid) values(x);

end;

/

/* END FRONTDESKS */

/* COUNSELORS */

create or replace view view_counselors_updateable

AS select * from users natural join staff natural join COUNSELORS ;

select * from view_counselors_updateable;

create or replace trigger insert_counselors_view

instead of insert

on view_counselors_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into COUNSELORS(userid) values(x);

end;

/

31

/* END COUNSELORS*/

/***

END OF UPDATEABLE USER VIEWS

**/

/* 4 updateable view for bookings

 These work with a trigger to allow us to simplify adding bookings, which are spread across 2

tables. */

 /* Appointments */

drop view view_appointments_updateable;

create view view_appointments_updateable

AS select * from bookings natural join appointments;

create or replace trigger insert_appointment_view

instead of insert

on view_appointments_updateable

for each row

declare

x APPOINTMENTS.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

insert into appointments(bookingid, tutorid) values(x,:new.tutorid);

end;

/

/* END Appointments */

 /* EVENTS */

drop view view_events_updateable;

create view view_events_updateable

AS select * from bookings natural join events;

32

create or replace trigger insert_events_view

instead of insert

on view_events_updateable

for each row

declare

x events.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

insert into events(bookingid, event_name, topic) values(x,:new.event_name, :new.topic);

end;

/

/* END EVENTS */

/* TRAINING_SESSIONS */

drop view view_trainingsess_updateable;

create view view_trainingsess_updateable

AS select * from bookings natural join training_sessions;

create or replace trigger insert_trainingsess_view

instead of insert

on view_trainingsess_updateable

for each row

declare

x training_sessions.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

33

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

insert into TRAINING_SESSIONS(BOOKINGID, TRAINING_TITLE)

values(x, :new.TRAINING_TITLE);

end;

/

/* END TRAINING_SESSIONS */

/* RESERVATIONS */

drop view view_reservation_updateable;

create view view_reservation_updateable

AS select * from bookings natural join reservations;

create or replace trigger insert_reservations_view

instead of insert

on view_reservation_updateable

for each row

declare

x reservations.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

insert into RESERVATIONS(BOOKINGID, RESERVATION_DETAIL)

values(x, :new.RESERVATION_DETAIL);

end;

/

/* END RESERVATIONS */

/***

END OF UPDATEABLE BOOKINGS VIEWS

**/

34

Chapter 4.

First, our team provide our insertion code below:

-- Drop sequences code:

drop sequence pk_attendancerecord;

-- PK sequence.

create sequence pk_attendancerecord start with 1000001 maxvalue 1999999 increment by 1;

-- Drop sequences code:

drop sequence pk_users;

-- PK sequence.

create sequence pk_users start with 10000001 maxvalue 19999999 increment by 1;

-- Drop sequences code:

drop sequence pk_bookings;

-- PK sequence.

create sequence pk_bookings start with 100000000001 maxvalue 199999999999 increment by 1;

-- Drop sequences code:

drop sequence pk_roomequipment;

-- PK sequence.

create sequence pk_roomequipment start with 100000000001 maxvalue 199999999999

increment by 1;

-- cleaning script

truncate table ROOMCLASSIFICATION cascade;

truncate table FORM cascade;

truncate table ROOMS cascade;

truncate table CanCreate cascade;

truncate table USERTYPE cascade;

truncate table BOOKINGTYPE cascade;

truncate table users cascade;

truncate table students cascade;

truncate table staff cascade;

truncate table counselors cascade;

truncate table learningspecialists cascade;

truncate table administrators cascade;

35

truncate table frontdesks cascade;

truncate table DAILYWORKRECORD cascade;

truncate table TUTORS cascade;

truncate table PROFESSORS cascade;

truncate table SUBJECTS cascade;

truncate table COURSES cascade;

truncate table COURSESCHEDULE cascade;

truncate table ATTENDANCERECORD cascade;

truncate table ROOMEQUIPMENT cascade;

truncate table EQUIPMENTTYPE cascade;

truncate table ROOMSCHEDULE cascade;

truncate table RESERVATIONS cascade;

truncate table TRAINING_SESSIONS cascade;

truncate table events cascade;

truncate table appointments cascade;

truncate table TRAININGRECORD cascade;

truncate table SKILLLEVEL cascade;

truncate table INCHARGE cascade;

--ROOMCLASSIFICATION

INSERT INTO ROOMCLASSIFICATION VALUES('Computer Lab', 0);

INSERT INTO ROOMCLASSIFICATION VALUES('Small Study Room', 0);

INSERT INTO ROOMCLASSIFICATION VALUES('Large Study Room', 0);

INSERT INTO ROOMCLASSIFICATION VALUES('Meetgin Room', 0);

INSERT INTO ROOMCLASSIFICATION VALUES('Auditorium', 0);

--ROOM INSERT(20)

INSERT INTO ROOMS VALUES('L201', 58, 'L');

INSERT INTO ROOMS VALUES('L202', 28, 'L');

INSERT INTO ROOMS VALUES('L203', 21, 'Y');

INSERT INTO ROOMS VALUES('L204', 42, 'L');

INSERT INTO ROOMS VALUES('L205', 33, 'L');

INSERT INTO ROOMS VALUES('L206', 30, 'Y');

INSERT INTO ROOMS VALUES('L207', 21, 'Y');

INSERT INTO ROOMS VALUES('L208', 32, 'Y');

INSERT INTO ROOMS VALUES('L209', 20, 'N');

36

INSERT INTO ROOMS VALUES('L210', 15, 'N');

INSERT INTO ROOMS VALUES('L211', 28, 'Y');

INSERT INTO ROOMS VALUES('L212', 47, 'L');

INSERT INTO ROOMS VALUES('L213', 21, 'N');

INSERT INTO ROOMS VALUES('L214', 39, 'L');

INSERT INTO ROOMS VALUES('L215', 27, 'L');

INSERT INTO ROOMS VALUES('L216', 40, 'N');

INSERT INTO ROOMS VALUES('L217', 18, 'L');

INSERT INTO ROOMS VALUES('L218', 51, 'N');

INSERT INTO ROOMS VALUES('L219', 11, 'L');

INSERT INTO ROOMS VALUES('L220', 17, 'Y');

--FORM

INSERT INTO FORM VALUES('L201', 'Computer Lab');

INSERT INTO FORM VALUES('L202', 'Computer Lab');

INSERT INTO FORM VALUES('L203', 'Small Study Room');

INSERT INTO FORM VALUES('L204', 'Computer Lab');

INSERT INTO FORM VALUES('L205', 'Computer Lab');

INSERT INTO FORM VALUES('L206', 'Small Study Room');

INSERT INTO FORM VALUES('L207', 'Small Study Room');

INSERT INTO FORM VALUES('L208', 'Computer Lab');

INSERT INTO FORM VALUES('L209', 'Small Study Room');

INSERT INTO FORM VALUES('L210', 'Large Study Room');

INSERT INTO FORM VALUES('L211', 'Computer Lab');

INSERT INTO FORM VALUES('L212', 'Large Study Room');

INSERT INTO FORM VALUES('L213', 'Auditorium');

INSERT INTO FORM VALUES('L214', 'Computer Lab');

INSERT INTO FORM VALUES('L215', 'Large Study Room');

INSERT INTO FORM VALUES('L216', 'Auditorium');

INSERT INTO FORM VALUES('L217', 'Small Study Room');

INSERT INTO FORM VALUES('L218', 'Computer Lab');

INSERT INTO FORM VALUES('L218', 'Large Study Room');

INSERT INTO FORM VALUES('L219', 'Computer Lab');

INSERT INTO FORM VALUES('L219', 'Large Study Room');

INSERT INTO FORM VALUES('L220', 'Computer Lab');

INSERT INTO FORM VALUES('L220', 'Large Study Room');

-- usertype

INSERT INTO USERTYPE VALUES('STUDENT', 0);

INSERT INTO USERTYPE VALUES('STAFF', 0);

37

INSERT INTO USERTYPE VALUES('COUNSELOR', 0);

INSERT INTO USERTYPE VALUES('LEARNINGSPECIALIST', 0);

INSERT INTO USERTYPE VALUES('FRONTDESK', 0);

INSERT INTO USERTYPE VALUES('ADMINISTRATOR', 0);

--bookingtype

INSERT INTO BOOKINGTYPE VALUES('APPOINTMENT', 0);

INSERT INTO BOOKINGTYPE VALUES('RESERVATION', 0);

INSERT INTO BOOKINGTYPE VALUES('EVENT', 0);

INSERT INTO BOOKINGTYPE VALUES('TRAINING_SESSION', 0);

-- cancreate

INSERT INTO CanCreate VALUES('APPOINTMENT', 'STUDENT');

INSERT INTO CanCreate VALUES('RESERVATION', 'STUDENT');

INSERT INTO CanCreate VALUES('EVENT', 'STUDENT');

INSERT INTO CanCreate VALUES('TRAINING_SESSION', 'STUDENT');

INSERT INTO CanCreate VALUES('APPOINTMENT', 'STAFF');

INSERT INTO CanCreate VALUES('RESERVATION', 'STAFF');

INSERT INTO CanCreate VALUES('EVENT', 'STAFF');

INSERT INTO CanCreate VALUES('TRAINING_SESSION', 'STAFF');

--USER---

--counselor(10)

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(1,'pw21', 'counselor21','lastname21','213 W Park

Ave','Tucson','AZ','85719','counselor21@catmail.arizona.edu','5094703818','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(2,'pw22', 'counselor22','lastname22','213 W Park

Ave','Tucson','AZ','85719','counselor22@catmail.arizona.edu','8728849017','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

38

USERTYPE_ID, STAFFTYPE) VALUES(3,'pw23', 'counselor23','lastname23','213 W Park

Ave','Tucson','AZ','85719','counselor23@catmail.arizona.edu','7620967375','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(4,'pw24', 'counselor24','lastname24','213 W Park

Ave','Tucson','AZ','85719','counselor24@catmail.arizona.edu','2078434693','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(6,'pw26', 'counselor26','lastname26','213 W Park

Ave','Tucson','AZ','85719','counselor26@catmail.arizona.edu','3612892249','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(5,'pw25', 'counselor25','lastname25','213 W Park

Ave','Tucson','AZ','85719','counselor25@catmail.arizona.edu','1598620115','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(7,'pw27', 'counselor27','lastname27','213 W Park

Ave','Tucson','AZ','85719','counselor27@catmail.arizona.edu','9199381458','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(8,'pw28', 'counselor28','lastname28','213 W Park

Ave','Tucson','AZ','85719','counselor28@catmail.arizona.edu','3455475531','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(9,'pw29', 'counselor29','lastname29','213 W Park

Ave','Tucson','AZ','85719','counselor29@catmail.arizona.edu','5143670419','STAFF','COUNSEL

OR');

INSERT INTO view_counselors_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(10,'pw30', 'counselor30','lastname30','213 W Park

Ave','Tucson','AZ','85719','counselor30@catmail.arizona.edu','5460641381','STAFF','COUNSEL

OR');

--SPORTS

39

INSERT INTO SPORTS VALUES('swimming', '10000010', 'COACH1');

INSERT INTO SPORTS VALUES('baseball', '10000004', 'COACH2');

INSERT INTO SPORTS VALUES('basketball', '10000001', 'COACH3');

INSERT INTO SPORTS VALUES('wrestling', '10000008', 'COACH4');

INSERT INTO SPORTS VALUES('volleyball', '10000009', 'COACH5');

--STUDENT INSERT (20)

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(11,'pw1', 'student1','lastname1','213 W Park

Ave','Tucson','AZ','85719','student1@catmail.arizona.edu','5233836939','STUDENT','Junior','swi

mming','10000010');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(12,'pw2', 'student2','lastname2','213 W Park

Ave','Tucson','AZ','85719','student2@catmail.arizona.edu','5639032930','STUDENT','Junior','bas

eball','10000004');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(13,'pw3', 'student3','lastname3','213 W Park

Ave','Tucson','AZ','85719','student3@catmail.arizona.edu','9324475721','STUDENT','Junior','wr

estling','10000008');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(14,'pw4', 'student4','lastname4','213 W Park

Ave','Tucson','AZ','85719','student4@catmail.arizona.edu','6632803514','STUDENT','Senior','bas

eball','10000004');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(15,'pw5', 'student5','lastname5','213 W Park

Ave','Tucson','AZ','85719','student5@catmail.arizona.edu','7538439841','STUDENT','Sophomor

e','volleyball','10000009');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

40

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(16,'pw6', 'student6','lastname6','213 W Park

Ave','Tucson','AZ','85719','student6@catmail.arizona.edu','9302357872','STUDENT','Freshman','

basketball','10000001');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(17,'pw7', 'student7','lastname7','213 W Park

Ave','Tucson','AZ','85719','student7@catmail.arizona.edu','3891263244','STUDENT','Senior','bas

eball','10000004');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(18,'pw8', 'student8','lastname8','213 W Park

Ave','Tucson','AZ','85719','student8@catmail.arizona.edu','4710071173','STUDENT','Sophomor

e','wrestling','10000008');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(19,'pw9', 'student9','lastname9','213 W Park

Ave','Tucson','AZ','85719','student9@catmail.arizona.edu','5271071145','STUDENT','Freshman','

swimming','10000010');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(20,'pw10', 'student10','lastname10','213 W Park

Ave','Tucson','AZ','85719','student10@catmail.arizona.edu','1692607624','STUDENT','Junior','s

wimming','10000010');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(21,'pw11', 'student11','lastname11','213 W Park

Ave','Tucson','AZ','85719','student11@catmail.arizona.edu','7050795021','STUDENT','Sophomo

re','volleyball','10000009');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(22,'pw12', 'student12','lastname12','213 W Park

Ave','Tucson','AZ','85719','student12@catmail.arizona.edu','5203485070','STUDENT','Senior','v

olleyball','10000009');

41

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(23,'pw13', 'student13','lastname13','213 W Park

Ave','Tucson','AZ','85719','student13@catmail.arizona.edu','9472235572','STUDENT','Freshman

','wrestling','10000008');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(24,'pw14', 'student14','lastname14','213 W Park

Ave','Tucson','AZ','85719','student14@catmail.arizona.edu','7279902100','STUDENT','Freshman

','basketball','10000001');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(25,'pw15', 'student15','lastname15','213 W Park

Ave','Tucson','AZ','85719','student15@catmail.arizona.edu','1129825091','STUDENT','Senior','s

wimming','10000010');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(26,'pw16', 'student16','lastname16','213 W Park

Ave','Tucson','AZ','85719','student16@catmail.arizona.edu','2151533116','STUDENT','Junior','ba

seball','10000004');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(27,'pw17', 'student17','lastname17','213 W Park

Ave','Tucson','AZ','85719','student17@catmail.arizona.edu','3590203166','STUDENT','Sophomo

re','volleyball','10000009');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(28,'pw18', 'student18','lastname18','213 W Park

Ave','Tucson','AZ','85719','student18@catmail.arizona.edu','1932575108','STUDENT','Freshman

','wrestling','10000008');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(29,'pw19', 'student19','lastname19','213 W Park

42

Ave','Tucson','AZ','85719','student19@catmail.arizona.edu','9444980923','STUDENT','Senior','b

asketball','10000001');

INSERT INTO view_students_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

VALUES(30,'pw20', 'student20','lastname20','213 W Park

Ave','Tucson','AZ','85719','student20@catmail.arizona.edu','4981906887','STUDENT','Sophomo

re','basketball','10000004');

 --Learningspecialist (10)

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(31,'pw31', 'specialist31','lastname31','213 W Park

Ave','Tucson','AZ','85719','specialist31@catmail.arizona.edu','4819828255','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(32,'pw32', 'specialist32','lastname32','213 W Park

Ave','Tucson','AZ','85719','specialist32@catmail.arizona.edu','9500004262','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(33,'pw33', 'specialist33','lastname33','213 W Park

Ave','Tucson','AZ','85719','specialist33@catmail.arizona.edu','6069056120','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(34,'pw34', 'specialist34','lastname34','213 W Park

Ave','Tucson','AZ','85719','specialist34@catmail.arizona.edu','9202263184','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(35,'pw35', 'specialist35','lastname35','213 W Park

Ave','Tucson','AZ','85719','specialist35@catmail.arizona.edu','6725752580','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

43

USERTYPE_ID, STAFFTYPE) VALUES(36,'pw36', 'specialist36','lastname36','213 W Park

Ave','Tucson','AZ','85719','specialist36@catmail.arizona.edu','1805317580','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(37,'pw37', 'specialist37','lastname37','213 W Park

Ave','Tucson','AZ','85719','specialist37@catmail.arizona.edu','4298780619','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(38,'pw38', 'specialist38','lastname38','213 W Park

Ave','Tucson','AZ','85719','specialist38@catmail.arizona.edu','4517654616','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(39,'pw39', 'specialist39','lastname39','213 W Park

Ave','Tucson','AZ','85719','specialist39@catmail.arizona.edu','6631048093','STAFF','LEARNIN

GSPECIALIST');

INSERT INTO view_learningspecs_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(40,'pw40', 'specialist40','lastname40','213 W Park

Ave','Tucson','AZ','85719','specialist40@catmail.arizona.edu','5558395891','STAFF','LEARNIN

GSPECIALIST');

 --Admin(5)

INSERT INTO view_administrators_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE, MANAGED_DEPARTMENTS) VALUES(41,'pw41',

'admin41','lastname41','213 W Park

Ave','Tucson','AZ','85719','admin41@catmail.arizona.edu','3172114281','STAFF','ADMINISTR

ATOR','Finance');

INSERT INTO view_administrators_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE, MANAGED_DEPARTMENTS) VALUES(42,'pw42',

'admin42','lastname42','213 W Park

Ave','Tucson','AZ','85719','admin42@catmail.arizona.edu','3588005701','STAFF','ADMINISTR

ATOR','MIS');

INSERT INTO view_administrators_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

44

USERTYPE_ID, STAFFTYPE, MANAGED_DEPARTMENTS) VALUES(43,'pw43',

'admin43','lastname43','213 W Park

Ave','Tucson','AZ','85719','admin43@catmail.arizona.edu','5713767536','STAFF','ADMINISTR

ATOR','MIS');

INSERT INTO view_administrators_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE, MANAGED_DEPARTMENTS) VALUES(44,'pw44',

'admin44','lastname44','213 W Park

Ave','Tucson','AZ','85719','admin44@catmail.arizona.edu','7216007744','STAFF','ADMINISTR

ATOR','Accounting');

INSERT INTO view_administrators_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE, MANAGED_DEPARTMENTS) VALUES(45,'pw45',

'admin45','lastname45','213 W Park

Ave','Tucson','AZ','85719','admin45@catmail.arizona.edu','2238948834','STAFF','ADMINISTR

ATOR','Economy');

--frontdesk(5)

INSERT INTO view_frontdesks_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(46,'pw46', 'front46','lastname46','213 W Park

Ave','Tucson','AZ','85719','front46@catmail.arizona.edu','5128938474','STAFF','FRONTDESK')

;

INSERT INTO view_frontdesks_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(47,'pw47', 'front47','lastname47','213 W Park

Ave','Tucson','AZ','85719','front47@catmail.arizona.edu','4426130680','STAFF','FRONTDESK')

;

INSERT INTO view_frontdesks_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(48,'pw48', 'front48','lastname48','213 W Park

Ave','Tucson','AZ','85719','front48@catmail.arizona.edu','2484325888','STAFF','FRONTDESK')

;

INSERT INTO view_frontdesks_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE) VALUES(49,'pw49', 'front49','lastname49','213 W Park

Ave','Tucson','AZ','85719','front49@catmail.arizona.edu','2481133150','STAFF','FRONTDESK')

;

INSERT INTO view_frontdesks_updateable (universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY, STATE, ZIPCODE, EMAIL, PHONENO,

45

USERTYPE_ID, STAFFTYPE) VALUES(50,'pw50', 'front50','lastname50','213 W Park

Ave','Tucson','AZ','85719','front50@catmail.arizona.edu','6936881956','STAFF','FRONTDESK')

;

--DAILYWORKRECORD

INSERT INTO DAILYWORKRECORD VALUES('10000046', to_date('17-MAR-2016','DD-

MON-YY'), 'Three Attendee totally');

INSERT INTO DAILYWORKRECORD VALUES('10000047', to_date('18-SEP-2016','DD-

MON-YY'), 'Five Attendee totally');

INSERT INTO DAILYWORKRECORD VALUES('10000046', to_date('01-JUN-2016','DD-

MON-YY'), 'One Attendee totally');

INSERT INTO DAILYWORKRECORD VALUES('10000050', to_date('07-MAR-2016','DD-

MON-YY'), 'Two Attendee totally');

INSERT INTO DAILYWORKRECORD VALUES('10000049', to_date('27-OCT-2016','DD-

MON-YY'), 'Three Attendee totally');

--subject

INSERT INTO SUBJECTS VALUES('Englsih', 'A modern language');

INSERT INTO SUBJECTS VALUES('MIS', 'Management Information System');

INSERT INTO SUBJECTS VALUES('Statistics', 'Stat is not boring');

INSERT INTO SUBJECTS VALUES('Finance', 'Earning money');

INSERT INTO SUBJECTS VALUES('Physics', 'Thanks to Newton');

INSERT INTO SUBJECTS VALUES('Chemistry', 'All the explosion starts from here');

INSERT INTO SUBJECTS VALUES('History', 'Humanities stories');

INSERT INTO SUBJECTS VALUES('Geography', 'Know the Earth');

INSERT INTO SUBJECTS VALUES('Law', 'Better obey it');

INSERT INTO SUBJECTS VALUES('Economy', 'Econ');

--course

INSERT INTO COURSES VALUES('MIS543', 'Networking', 'Networking Knowledge', 'MIS');

INSERT INTO COURSES VALUES('FIN123', 'Earning Money', 'basic knowledge about

earning money', 'Finance');

INSERT INTO COURSES VALUES('MIS531', 'EDM', 'Enterprise Database Management',

'MIS');

INSERT INTO COURSES VALUES('CHE681', 'Explosion', 'BOOM', 'Chemistry');

INSERT INTO COURSES VALUES('PHY101', 'The Apple', 'falling off the tree', 'Physics');

INSERT INTO COURSES VALUES('MIS509', 'Bis Com', 'Communication', 'MIS');

46

INSERT INTO COURSES VALUES('MIS541', 'ISAD', 'Info System Analysis and Design',

'MIS');

INSERT INTO COURSES VALUES('MIS513', 'Web Mining', 'Mining', 'MIS');

INSERT INTO COURSES VALUES('MIS688', 'Case Study', 'Counsulting Case Study', 'MIS');

INSERT INTO COURSES VALUES('FIN576', 'Stock', 'Earning money in a different way',

'Finance');

--Tutor

INSERT INTO TUTORS VALUES('21103942', 'Tutor1', 'Lee', 'Englsih', 'Junior');

INSERT INTO TUTORS VALUES('21103950', 'Tutor2', 'A', 'MIS', 'PHD');

INSERT INTO TUTORS VALUES('21102912', 'Tutor3', 'B', 'Statistics', 'Senior');

INSERT INTO TUTORS VALUES('21123942', 'Tutor4', 'C', 'Finance', 'Sophomore');

INSERT INTO TUTORS VALUES('21114242', 'Tutor5', 'D', 'Physics', 'Graduate');

INSERT INTO TUTORS VALUES('22314223', 'Tutor6', 'E', 'Chemistry', 'Graduate');

INSERT INTO TUTORS VALUES('22314210', 'Tutor7', 'F', 'History', 'PHD');

INSERT INTO TUTORS VALUES('22314211', 'Tutor8', 'G', 'Geography', 'Sophomore');

INSERT INTO TUTORS VALUES('22314212', 'Tutor9', 'H', 'Law', 'Senior');

INSERT INTO TUTORS VALUES('22314213', 'Tutor10', 'I', 'Economy', 'Graduate');

--professors

INSERT INTO PROFESSORS VALUES('21231231', 'Prof1', 'A', 'English');

INSERT INTO PROFESSORS VALUES('21231232', 'Prof2', 'B', 'MIS');

INSERT INTO PROFESSORS VALUES('21231233', 'Prof3', 'C', 'Finance');

INSERT INTO PROFESSORS VALUES('21231234', 'Prof4', 'D', 'Chemistry');

INSERT INTO PROFESSORS VALUES('21231235', 'Prof5', 'E', 'Economy');

INSERT INTO PROFESSORS VALUES('21231236', 'Prof6', 'F', 'Physics');

INSERT INTO PROFESSORS VALUES('21231237', 'Prof7', 'G', 'Statistics');

INSERT INTO PROFESSORS VALUES('21231238', 'Prof8', 'H', 'History');

INSERT INTO PROFESSORS VALUES('21231239', 'Prof9', 'I', 'Geography');

INSERT INTO PROFESSORS VALUES('21231240', 'Prof10', 'J', 'Law');

-- COURSESCHEDULE

INSERT INTO COURSESCHEDULE VALUES('21231232', 'MIS543', '001');

INSERT INTO COURSESCHEDULE VALUES('21231232', 'MIS543', '002');

INSERT INTO COURSESCHEDULE VALUES('21231232', 'MIS531', '001');

INSERT INTO COURSESCHEDULE VALUES('21231232', 'MIS531', '002');

INSERT INTO COURSESCHEDULE VALUES('21231233', 'FIN123', '001');

47

INSERT INTO COURSESCHEDULE VALUES('21231234', 'CHE681', '001');

INSERT INTO COURSESCHEDULE VALUES('21231236', 'PHY101', '001');

INSERT INTO COURSESCHEDULE VALUES('21231232', 'MIS688', '001');

INSERT INTO COURSESCHEDULE VALUES('21231233', 'FIN576', '001');

INSERT INTO COURSESCHEDULE VALUES('21231232', 'MIS513', '001');

--ATTENDANCERECORD

INSERT INTO ATTENDANCERECORD VALUES('10000021', 'MIS543', '1000001', 'missed 3

times');

INSERT INTO ATTENDANCERECORD VALUES('10000021', 'MIS531', '1000002', 'missed 1

times');

INSERT INTO ATTENDANCERECORD VALUES('10000021', 'PHY101', '1000003', 'missed

14 times');

INSERT INTO ATTENDANCERECORD VALUES('10000021', 'FIN123', '1000004', '');

INSERT INTO ATTENDANCERECORD VALUES('10000015', 'CHE681', '1000005', '');

INSERT INTO ATTENDANCERECORD VALUES('10000018', 'MIS531', '1000006', '');

INSERT INTO ATTENDANCERECORD VALUES('10000018', 'MIS543', '1000007', '');

INSERT INTO ATTENDANCERECORD VALUES('10000018', 'FIN123', '1000008', '');

INSERT INTO ATTENDANCERECORD VALUES('10000011', 'CHE681', '1000009', '');

INSERT INTO ATTENDANCERECORD VALUES('10000020', 'FIN123', '1000010', '');

--EQUIPMENTTYPE

INSERT INTO EQUIPMENTTYPE VALUES('Computer', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Projector', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Table', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Printer', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Chair', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Screen', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Blackboard', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Whiteboard', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Clicker', 0);

INSERT INTO EQUIPMENTTYPE VALUES('Laptop', 0);

-- ROOMEQUIPMENT

INSERT INTO ROOMEQUIPMENT VALUES('100000000001', 'Normal, purchased in 2014',

'Computer', 'L201');

INSERT INTO ROOMEQUIPMENT VALUES('100000000002', 'Normal, purchased in 2015',

'Projector', 'L201');

48

INSERT INTO ROOMEQUIPMENT VALUES('100000000003', 'Normal, purchased in 2013',

'Computer', 'L202');

INSERT INTO ROOMEQUIPMENT VALUES('100000000004', 'Normal, purchased in 2010',

'Projector', 'L202');

INSERT INTO ROOMEQUIPMENT VALUES('100000000005', 'Normal, purchased in 2014',

'Computer', 'L203');

INSERT INTO ROOMEQUIPMENT VALUES('100000000006', 'Normal, purchased in 2014',

'Computer', 'L204');

INSERT INTO ROOMEQUIPMENT VALUES('100000000007', 'Normal, purchased in 2015',

'Table', 'L205');

INSERT INTO ROOMEQUIPMENT VALUES('100000000008', 'Normal, purchased in 2013',

'Table', 'L212');

INSERT INTO ROOMEQUIPMENT VALUES('100000000009', 'Normal, purchased in 2013',

'Table', 'L213');

INSERT INTO ROOMEQUIPMENT VALUES('100000000010', 'Normal, purchased in 2014',

'Table', 'L219');

-- ROOMSCHEDULE

INSERT INTO ROOMSCHEDULE VALUES('L201', to_date('10-OCT-2016','DD-MON-YY'),

to_date('11:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Study');

INSERT INTO ROOMSCHEDULE VALUES('L203', to_date('10-OCT-2016','DD-MON-YY'),

to_date('11:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Study');

INSERT INTO ROOMSCHEDULE VALUES('L203', to_date('11-OCT-2016','DD-MON-YY'),

to_date('11:30:00','hh24:mi:ss'), to_date('12:30:00','hh24:mi:ss'), 'Study');

INSERT INTO ROOMSCHEDULE VALUES('L204', to_date('14-OCT-2016','DD-MON-YY'),

to_date('13:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Study');

INSERT INTO ROOMSCHEDULE VALUES('L205', to_date('10-OCT-2016','DD-MON-YY'),

to_date('12:00:00','hh24:mi:ss'), to_date('14:00:00','hh24:mi:ss'), 'Study');

INSERT INTO ROOMSCHEDULE VALUES('L207', to_date('12-OCT-2016','DD-MON-YY'),

to_date('11:30:00','hh24:mi:ss'), to_date('12:30:00','hh24:mi:ss'), 'Training Session');

INSERT INTO ROOMSCHEDULE VALUES('L208', to_date('12-OCT-2016','DD-MON-YY'),

to_date('11:30:00','hh24:mi:ss'), to_date('13:30:00','hh24:mi:ss'), 'Training Session');

INSERT INTO ROOMSCHEDULE VALUES('L210', to_date('18-OCT-2016','DD-MON-YY'),

to_date('12:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Training Session');

INSERT INTO ROOMSCHEDULE VALUES('L211', to_date('09-OCT-2016','DD-MON-YY'),

to_date('13:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Training Session');

INSERT INTO ROOMSCHEDULE VALUES('L212', to_date('08-OCT-2016','DD-MON-YY'),

to_date('13:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Training Session');

49

INSERT INTO ROOMSCHEDULE VALUES('L212', to_date('04-OCT-2016','DD-MON-YY'),

to_date('09:00:00','hh24:mi:ss'), to_date('11:00:00','hh24:mi:ss'), 'Dept Meeting');

INSERT INTO ROOMSCHEDULE VALUES('L217', to_date('10-OCT-2016','DD-MON-YY'),

to_date('10:30:00','hh24:mi:ss'), to_date('11:30:00','hh24:mi:ss'), 'Dept Meeting');

INSERT INTO ROOMSCHEDULE VALUES('L218', to_date('11-OCT-2016','DD-MON-YY'),

to_date('10:30:00','hh24:mi:ss'), to_date('12:30:00','hh24:mi:ss'), 'Dept Meeting');

INSERT INTO ROOMSCHEDULE VALUES('L219', to_date('17-OCT-2016','DD-MON-YY'),

to_date('12:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Dept Meeting');

INSERT INTO ROOMSCHEDULE VALUES('L220', to_date('15-OCT-2016','DD-MON-YY'),

to_date('11:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Dept Meeting');

INSERT INTO ROOMSCHEDULE VALUES('L211', to_date('03-OCT-2016','DD-MON-YY'),

to_date('09:00:00','hh24:mi:ss'), to_date('11:00:00','hh24:mi:ss'), 'Math Tutor Session');

INSERT INTO ROOMSCHEDULE VALUES('L213', to_date('13-OCT-2016','DD-MON-YY'),

to_date('10:30:00','hh24:mi:ss'), to_date('11:30:00','hh24:mi:ss'), 'MIS Tutor Session');

INSERT INTO ROOMSCHEDULE VALUES('L214', to_date('13-OCT-2016','DD-MON-YY'),

to_date('10:30:00','hh24:mi:ss'), to_date('12:30:00','hh24:mi:ss'), 'MIS Tutor Session');

INSERT INTO ROOMSCHEDULE VALUES('L215', to_date('23-OCT-2016','DD-MON-YY'),

to_date('12:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Math Tutor Session');

INSERT INTO ROOMSCHEDULE VALUES('L216', to_date('13-OCT-2016','DD-MON-YY'),

to_date('11:30:00','hh24:mi:ss'), to_date('14:30:00','hh24:mi:ss'), 'Stat Tutor Session');

--BOOKINGS

 --reservation

insert into view_reservation_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

RESERVATION_DETAIL) values('RESERVATION', 'OnTime','L201', 3, 'Fall2016','10-OCT-

16','10-OCT-16','10-MAR-16', '10000013','Test Reservation Detail A');

insert into view_reservation_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

RESERVATION_DETAIL) values('RESERVATION', 'OnTime','L203', 1, 'Fall2016','11-OCT-

16','11-OCT-16','10-MAR-16', '10000015','Test Reservation Detail B');

insert into view_reservation_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

RESERVATION_DETAIL) values('RESERVATION', 'NoShow','L203', 3, 'Fall2016','10-OCT-

16','10-OCT-16','10-MAR-16', '10000019','Test Reservation Detail C');

insert into view_reservation_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

50

RESERVATION_DETAIL) values('RESERVATION', 'Cancelled','L204', 1, 'Fall2016','14-OCT-

16','14-OCT-16','10-MAR-16', '10000012','Test Reservation Detail D');

insert into view_reservation_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

RESERVATION_DETAIL) values('RESERVATION', 'OnTime','L205', 2, 'Fall2016','10-OCT-

16','10-OCT-16','10-MAR-16', '10000014','Test Reservation Detail E');

 --trainingsessions

insert into view_trainingsess_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TRAINING_TITLE) values ('TRAINING_SESSION', 'OnTime','L207', 1, 'Fall2016','12-OCT-

16','12-OCT-16','10-MAR-16', '10000031','Test Title1');

insert into view_trainingsess_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TRAINING_TITLE) values ('TRAINING_SESSION', 'OnTime','L208', 2, 'Fall2016','12-OCT-

16','12-OCT-16','10-MAR-16', '10000034','Test Title2');

insert into view_trainingsess_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TRAINING_TITLE) values ('TRAINING_SESSION', 'OnTime','L210', 2, 'Fall2016','18-OCt-

16','18-OCT-16','10-MAR-16', '10000035','Test Title3');

insert into view_trainingsess_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TRAINING_TITLE) values ('TRAINING_SESSION', 'OnTime','L211', 1, 'Fall2016','09-OCT-

16','09-OCT-16','10-MAR-16', '10000037','Test Title4');

insert into view_trainingsess_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TRAINING_TITLE) values ('TRAINING_SESSION', 'Cancelled','L212', 1, 'Fall2016','08-OCT-

16','08-OCT-16','10-MAR-16', '10000038','Test Title5');

 --events

insert into view_events_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID, EVENT_NAME,

TOPIC) values ('EVENT', 'OnTime','L212', 2, 'Fall2016','04-OCT-16', '04-OCT-16','10-MAR-

16', '10000041','Test Name', 'Test Topic1');

insert into view_events_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID, EVENT_NAME,

51

TOPIC) values ('EVENT', 'OnTime','L217', 1, 'Fall2016','10-OCT-16', '10-OCT-16','10-MAR-

16', '10000041','Test Name', 'Test Topic2');

insert into view_events_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID, EVENT_NAME,

TOPIC) values ('EVENT', 'OnTime','L218', 2, 'Fall2016','11-OCT-16', '11-OCT-16','10-MAR-

16', '10000042','Test Name', 'Test Topic3');

insert into view_events_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID, EVENT_NAME,

TOPIC) values ('EVENT', 'OnTime','L219', 2, 'Fall2016','17-OCT-16', '17-OCT-16','10-MAR-

16', '10000044','Test Name', 'Test Topic4');

insert into view_events_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID, EVENT_NAME,

TOPIC) values ('EVENT', 'OnTime','L220', 3, 'Fall2016','15-OCT-16', '15-OCT-16','10-MAR-

16', '10000044','Test Name', 'Test Topic5');

 --appointment

--insert into view_appointments_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TUTORID)

insert into view_appointments_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TUTORID) values ('APPOINTMENT', 'OnTime','L211', 2, 'Fall2016','03-OCT-16', '03-OCT-

16','10-MAR-16', '10000021','22314223');

insert into view_appointments_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TUTORID) values ('APPOINTMENT', 'OnTime','L213', 1, 'Fall2016','13-OCT-16', '13-OCT-

16','10-MAR-16', '10000016','22314210');

insert into view_appointments_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TUTORID) values ('APPOINTMENT', 'Cancelled','L214', 2, 'Fall2016','13-OCT-16', '13-OCT-

16','10-MAR-16', '10000017','22314211');

insert into view_appointments_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

TUTORID) values ('APPOINTMENT', 'Cancelled','L215', 2, 'Fall2016','23-OCT-16', '23-OCT-

16','10-MAR-16', '10000021','22314212');

insert into view_appointments_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME, END_TIME, BOOKING_DATE, USERID,

52

TUTORID) values ('APPOINTMENT', 'NoShow','L216', 3, 'Fall2016','13-OCT-16', '13-OCT-

16','10-MAR-16', '10000020','22314213');

--TRAININGRECORD

INSERT INTO TRAININGRECORD VALUES('100000000006', '22314223', 'testing content

1');

INSERT INTO TRAININGRECORD VALUES('100000000007', '22314210', 'testing content

2');

INSERT INTO TRAININGRECORD VALUES('100000000008', '22314211', 'testing content

3');

INSERT INTO TRAININGRECORD VALUES('100000000009', '22314212', 'testing content

4');

INSERT INTO TRAININGRECORD VALUES('100000000010', '22314213', 'testing content

5');

--SKILLLEVEL

INSERT INTO SKILLLEVEL VALUES('21103942', 'Englsih', 'Good');

INSERT INTO SKILLLEVEL VALUES('21103950', 'MIS', 'Good');

INSERT INTO SKILLLEVEL VALUES('21102912', 'Statistics', 'Fine');

INSERT INTO SKILLLEVEL VALUES('21123942', 'Finance', 'Good');

INSERT INTO SKILLLEVEL VALUES('21114242', 'Physics', 'Bad');

INSERT INTO SKILLLEVEL VALUES('22314223', 'Chemistry', 'Good');

INSERT INTO SKILLLEVEL VALUES('22314210', 'History', 'Good');

INSERT INTO SKILLLEVEL VALUES('22314211', 'Geography', 'Good');

INSERT INTO SKILLLEVEL VALUES('22314212', 'Law', 'Good');

INSERT INTO SKILLLEVEL VALUES('22314213', 'Economy', 'Good');

--INCHARGE

INSERT INTO INCHARGE VALUES('Englsih', '10000031');

INSERT INTO INCHARGE VALUES('MIS', '10000032');

INSERT INTO INCHARGE VALUES('Statistics', '10000033');

INSERT INTO INCHARGE VALUES('Finance', '10000034');

INSERT INTO INCHARGE VALUES('Physics', '10000035');

INSERT INTO INCHARGE VALUES('Chemistry', '10000036');

INSERT INTO INCHARGE VALUES('History', '10000037');

INSERT INTO INCHARGE VALUES('Geography', '10000038');

INSERT INTO INCHARGE VALUES('Law', '10000039');

INSERT INTO INCHARGE VALUES('Economy', '10000040');

53

commit;

Then, we offer our SQL queries together with the detailed inline comments that clearly

explain how did we make these queries and what these SQL queries can realize.

-- 1

-- Find all students who play volleyball that are taking more than 3 courses,

-- display the tutor sessions for the past 12 months in the current semester.

select students.userid "Student ID", firstname || ' ' || lastname AS "Student Name",

count(distinct bookingid) AS "Number of Appointments"

from students, bookings, users

where bookingtype_ID = 'APPOINTMENT'

and sysdate-booking_date<365

---- check that students have more than 3 courses.

and students.userid in

(select student

from attendancerecord

group by student

having count(course) >=3)

---- joining the tables

and students.userid = bookings.userid

and students.userid = users.userid

---- plays basketball

and sporttype = 'volleyball'

---- groupby clause

group by students.userid, firstname, lastname;

-- 2

-- Find all students that had canceled at least 1 tutor sessions

-- in the past year, display their counselor

-- and the number of course they are taking.

select students.userid AS "Student ID", users.firstname AS "Student First Name",

users.lastname AS "Student Last Name",

counselors1.couns_fn || ' ' || counselors1.couns_ln AS "Counselor Name", course1.num_courses

"Number of Courses"

from students, users, bookings,

---- table with names for each student's counselor

54

 (select students.userid AS s_id, u2.firstname AS couns_fn,

 u2.lastname AS couns_ln from

 users u1, users u2, counselors, students

 where u1.userid = students.userid

 and u2.userid = counselors.userid

 and students.counselor_id = counselors.userid) counselors1,

---- table with counts of each student's courses

 (select student AS course_stu, count(course) AS num_courses

 from attendancerecord

 group by student) course1

--- only count appointments that are cancelled in the last 365 days.

where bookingtype_id = 'APPOINTMENT'

and status = 'Cancelled'

and sysdate - booking_date < 365

--- join all the tables

and users.userid = students.userid

and users.userid = bookings.userid

and users.userid = counselors1.s_id

and course1.course_stu = users.userid

--- group by

group by students.userid, users.firstname, users.lastname, counselors1.couns_fn,

counselors1.couns_ln, course1.num_courses

having count(bookingid)>= 1;

-- 3

/*

Give the count of students per counselor and sports type.

*/

select couns1.FIRSTNAME || ' ' || couns1.LASTNAME "Counselor Name", SPORTTYPE

"Sport",

count(distinct stu1.userid) AS "Number of Students"

from counselors, staff, users couns1, students, users stu1

-- join students and counselors

where students.COUNSELOR_ID = couns1.USERID

-- get the full counselor row

AND counselors.USERID = staff.USERID

AND staff.USERID = couns1.userid

-- get the student row

AND students.USERID = stu1.USERID

55

group by couns1.FIRSTNAME || ' ' || couns1.LASTNAME, SPORTTYPE;

-- 4

/*

For each student, count the number of reservations in the last year, and most common size of

room they

reserve.*/

select userid "User ID", count (distinct bookingid) "Number of Bookings",

STATS_MODE(roomsize) AS "Common Room Size"

from students natural join users natural join bookings natural join reservations join rooms on

room = roomnumber

where sysdate - booking_date < 365

group by userid;

-- 5

/*

Display all students that didn�t show up to at least 1 tutor sessions without cancellation;

display the number of course they are taking and the name of their counselor.

*/

select stu1.firstname || stu1.lastname "Student Name", couns1.firstname || couns1.lastname

"Counselor Name",

coursenum AS "Number of Courses"

from counselors, staff, users couns1, students, users stu1,

(select student as stu_id, count(distinct course) as coursenum

from attendancerecord

group by student) stucourse

-- join students and counselors

where students.COUNSELOR_ID = couns1.USERID

-- get the full counselor row

AND counselors.USERID = staff.USERID

AND staff.USERID = couns1.userid

-- get the student row

AND students.USERID = stu1.USERID

-- course numbers

AND students.userid = stucourse.stu_id

-- only students that no showed more than twice in the last 365 days.

and students.userid IN

(select userid from bookings where bookingtype_id = 'APPOINTMENT'

and status = 'NoShow'

56

and sysdate - booking_date< 365

group by userid

having count(bookingid)>= 1);

-- 6

/*

For each subject, count the number of learning specialists and tutors.

Order by the sum of both numbers.

*/

select subjects.subjectname AS "Subject Name",

lscount "Learning Specialist #",

tutscount "Tutors #"

from

(select subjectname, count (distinct LEARNINGSPECIALIST) as lscount

from incharge join subjects on subjectname = subject

group by subjectname) ls1,

(select subjectname, count (distinct tutor) as tutscount

from subjects join skilllevel on subjectname = subject

group by subjectname) tuts1,

subjects

where subjects.subjectname = ls1.subjectname

AND subjects.subjectname = tuts1.subjectname

order by lscount + tutscount DESC;

-- 7

/*

For each learning specialist in this Booking & Scheduling system who is responsible for

at least 1 subject, display the user_id (Heading: �User ID�), full name (Heading: �Learning

Specialist Name�),

the number of subjects each coordinator is charged of (Heading: �Subject Number�) and also

the

the number of students who enrolled course(s) that is in each subject. Order by the sum of both.

*/

select ls1.userid "User ID",

ls1.FIRSTNAME || ' ' || ls1.LASTNAME AS "Learning Specialist Name",

lssubject.subj_num "Subject Number", ls_students.stu_num "Student Number"

from

-- get LS information

(select * from LEARNINGSPECIALISTS natural join staff natural join users) ls1,

-- get number of subjects per LS

57

(select LEARNINGSPECIALIST, count(subject) subj_num from incharge group by

LEARNINGSPECIALIST) lssubject,

-- get number of students per LS

(select LEARNINGSPECIALIST, count(student) stu_num from incharge natural join courses

natural join ATTENDANCERECORD

group by LEARNINGSPECIALIST) ls_students

-- only LS with more than 2 subjects

where ls1.userid in (select LEARNINGSPECIALIST from incharge group by

LEARNINGSPECIALIST having count(subject)>= 1)

-- join tables for counts of subjects

and ls1.userid = lssubject.LEARNINGSPECIALIST

-- join tables for count of students

and ls1.userid = ls_students.LEARNINGSPECIALIST

order by ls_students.stu_num + lssubject.subj_num DESC

;

-- 8

/*

For each room size, count the number of reservations in the last month,

the number of rooms with reserverations in that type. Sort by number of reservations. Also

provide the userID of the user who makes the most reservations, and the most common type of

booking. */

select roomsize AS "Roomsize", count (distinct roomnumber) AS "Number of Rooms",

count(bookingid) AS "Number of Reservations", STATS_MODE(userid) AS "Most

Reservations UserID"

, STATS_MODE (BOOKINGTYPE_ID) AS "Most Common Booking Type"

from rooms join bookings on rooms.roomnumber = bookings.room

where bookingtype_ID = 'RESERVATION'

group by roomsize

order by count (distinct roomnumber);

-- 9

/* for each subject, provide the ID's of the professors that teach courses in that subject */

select subjectname, LISTAGG(PROFESSOR, ',') WITHIN GROUP (ORDER BY

courses.COURSE_ID) "Professors"

from subjects join courses on subjects.subjectname = courses.subject

join courseschedule on courseschedule.COURSE = courses.COURSE_ID

GROUP BY (subjectname);

58

-- 10

/* For basketball and baseball students, find the tutors they meet with the most. */

select tutid AS "Tutor ID", numstudents AS "Number of Students" from (

select tutors.TUTORID tutid, count (*) AS numstudents

from appointments join tutors on appointments.tutorid = tutors.tutorid

join bookings on bookings.BOOKINGid = appointments.BOOKINGID

join students on bookings.userid = students.userid

where (SPORTTYPE = 'basketball' OR SPORTTYPE= 'baseball')

group by tutors.tutorid

order by numstudents)

where rownum = 1;

-- 11

/* Sports with most cancellations*/

SELECT * FROM (

select students.SPORTTYPE AS "Sports Type", count (*) AS "Num cancellations"

from bookings join students on bookings.userid = students.userid

where status = 'Cancelled'

group by students.SPORTTYPE

order by count(*) DESC

)

where rownum = 1;

-- 12

/* Sports with most reservations*/

SELECT * FROM (

select students.SPORTTYPE AS "Sports Type", count (*) AS "Num reservations"

from bookings join students on bookings.userid = students.userid

where bookingtype_id = 'RESERVATION'

group by students.SPORTTYPE

order by count(*) DESC

)

where rownum = 1;

-- 13

/* Find the rooms that contain more than 1 equipment and contain at least 1 or more bookings,

where the bookings happened in the last year. */

select ROOMNUMBER from rooms

59

where roomnumber IN (select room from roomequipment group by room having count (distinct

equipment_ID) > 1)

and roomnumber IN (select room from BOOKINGS where sysdate - booking_date < 365 group

by room having count (distinct bookingID) >= 1);

At last, we also provide the following SQL code for future maintenance:

drop view VIEW_ADMINISTRATORS_UPDATEABLE;

drop view VIEW_FRONTDESKS_UPDATEABLE;

drop view VIEW_LEARNINGSPECS_UPDATEABLE;

drop view VIEW_EVENTS_UPDATEABLE;

drop view VIEW_TRAININGSESS_UPDATEABLE;

drop view VIEW_RESERVATION_UPDATEABLE;

drop trigger INSERT_STU_VIEW;

drop trigger INSERT_ADMINS_VIEW;

drop trigger INSERT_FRONTDESKS_VIEW;

drop trigger INSERT_COUNSELORS_VIEW;

drop trigger INSERT_LEARNINGSPEC_VIEW;

drop trigger INSERT_APPOINTMENT_VIEW;

drop trigger INSERT_EVENTS_VIEW;

drop trigger INSERT_TRAININGSESS_VIEW;

drop trigger INSERT_RESERVATIONS_VIEW;

drop table ATTENDANCERECORD cascade constraints;

drop table BOOKINGS cascade constraints;

drop table BOOKINGTYPE cascade constraints;

drop table CANCREATE cascade constraints;

drop table CANSUPPLY cascade constraints;

drop table COMPONENTS cascade constraints;

drop table COUNSELORS cascade constraints;

drop table COURSES cascade constraints;

drop table COURSESCHEDULE cascade constraints;

drop table CUSTOMERS cascade constraints;

drop table DAILYWORKRECORD cascade constraints;

drop table EQUIPMENTTYPE cascade constraints;

drop table EVENTS cascade constraints;

drop table FORM cascade constraints;

drop table FRONTDESKS cascade constraints;

drop table INCHARGE cascade constraints;

60

drop table LEARNINGSPECIALISTS cascade constraints;

drop table LOANDETAILS cascade constraints;

drop table LOANDOCSSUBMITTED cascade constraints;

drop table LOANDOCUMENTTOSTATUSMAPPING cascade constraints;

drop table LOANTYPEREPORT cascade constraints;

drop table LOANTYPES cascade constraints;

drop table PRODUCTS cascade constraints;

drop table PROFESSORS cascade constraints;

drop table PROPERTIES cascade constraints;

drop table REFKEYMAPPING cascade constraints;

drop table REGISTRATIONS cascade constraints;

drop table RESERVATIONS cascade constraints;

drop table ROOMCLASSIFICATION cascade constraints;

drop table ROOMEQUIPMENT cascade constraints;

drop table ROOMS cascade constraints;

drop table ROOMSCHEDULE cascade constraints;

drop table SCORECONVERSIONCHART cascade constraints;

drop table SKILLLEVEL cascade constraints;

drop table SPORTS cascade constraints;

drop table STAFF cascade constraints;

drop table STUDENTS cascade constraints;

drop table SUBJECTS cascade constraints;

drop table TRAININGRECORD cascade constraints;

drop table TRAINING_SESSIONS cascade constraints;

drop table TUTORS cascade constraints;

drop table USERS cascade constraints;

drop table USERTYPE cascade constraints;

drop table VENDORS cascade constraints;

drop table administrators cascade constraints;

Chapter 5.

In the Chapter 5, we show both triggers and views in detail, together with the detailed inline

comments and some query tests.

/***

TRIGGERS AND VIEWS

***/

-- upon update or insert of a user record with field, usertype,

61

-- must update count of user types

CREATE OR REPLACE TRIGGER update_user_type_counts

--- runs only once for any of these query types, not once for each row.

AFTER INSERT OR UPDATE OR DELETE

on USERS

DECLARE

---- cursor to find usertypes and counts from their table

CURSOR c1 IS

select * from usertype

where usertype_id = 'STAFF' OR usertype_id = 'STUDENT'

for update;

CURSOR c2 IS

select * from usertype

where usertype_id <> 'STAFF' AND usertype_id <> 'STUDENT'

for update;

BEGIN

---- go through each usertype and update the count

for x in c1

loop

update usertype

---- for the specific usertype, count how many records are now there.

set numofusers = (select count(*) from users where usertype_id = x.usertype_id)

---- update the row that corresponds to the current one in the cursor/loop.

where current of c1;

end loop;

for x in c2

loop

update usertype

---- for the specific stafftype, count how many records are now there.

set numofusers = (select count(*) from staff where stafftype = x.usertype_id)

---- update the row that corresponds to the current one in the cursor/loop.

where current of c2;

end loop;

END;

/

62

-- upon insertion of a new user, delete the matching refkey.

CREATE OR REPLACE TRIGGER delete_refkey_new_user

--- runs only once for any of these query types, not once for each row.

AFTER INSERT

on USERS

for each row

BEGIN

delete from refkeymapping where

refkeymapping.universityID = :new.universityID;

END;

/

-- following trigger can sometimes fail compilation.

/*

-- upon update or insert of an equipment record

-- must update count of equipment by type.

CREATE OR REPLACE TRIGGER update_equipment_counts

--- runs only once for any of these types, not once for each row.

AFTER INSERT OR UPDATE OR DELETE

on roomequipment

DECLARE

CURSOR c1 IS

select * from equipmenttype

for update;

BEGIN

---- go through each equipmenttype and update the count

for x in c1

loop

update equipmenttype

---- for the specific usertype, count how many records are now there.

set numofequip = (select count(*) from roomequipment where equipment_type =

x.EQUIPMENTTYPE_NAME)

---- update the row that corresponds to the current one in the cursor/loop.

where current of c1;

end loop;

END;

/

63

*/

/* Views: Stored Queries */

/* 5 updateable view for users

 These work with a trigger to allow us to simplify adding users (who are split across multiple

tables). */

/* STUDENTS */

drop view view_students_updateable;

create view view_students_updateable

AS select * from users natural join STUDENTS;

/*

create view view_students_updateable

AS select universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS, CITY,

 STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID from users

natural join STUDENTS;

*/

create or replace trigger insert_stu_view

instead of insert

on view_students_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into students(USERID,ACADEMIC_STANDING, SPORTTYPE, COUNSELOR_ID)

values(x,

:new.ACADEMIC_STANDING, :new.SPORTTYPE, :new.COUNSELOR_ID);

64

end;

/

/*

select * from view_students_updateable;

insert into view_students_updateable(universityid, PASSWORD, FIRSTNAME, LASTNAME,

STREETADDRESS, CITY,

STATE, ZIPCODE, EMAIL, PHONENO, USERTYPE_ID, ACADEMIC_STANDING,

SPORTTYPE, COUNSELOR_ID)

values (6,'1','Yazan','Fake','street','city','state','zipcode', 'yna@email.com','12312321'

,'STUDENT','Sophomore', 'Basketball', '10000030'); */

/* END STUDENTS */

/* LEARNING SPECIALISTS */

create or replace view view_learningspecs_updateable

AS select * from users natural join LEARNINGSPECIALISTS natural join staff;

/*

create or replace view view_learningspecs_updateable

AS select universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS, CITY,

 STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE from users natural join LEARNINGSPECIALISTS natural join

staff; */

create or replace trigger insert_learningspec_view

instead of insert

on view_learningspecs_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

65

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into LEARNINGSPECIALISTS(userid) values(x);

end;

/

/*

select * from view_learningspecs_updateable;

insert into view_learningspecs_updateable(universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY,

STATE, ZIPCODE, EMAIL, PHONENO, USERTYPE_ID, STAFFTYPE)

values (20,'1','Yazan','Fake','street','city','state','zipcode', 'yna@email.com','12312321'

,'STAFF','LEARNINGSPECIALIST'); */

/* END LEARNING SPECIALISTS */

/* ADMINISTRATORS */

create or replace view view_administrators_updateable

AS select * from users natural join staff natural join ADMINISTRATORS;

/*

create or replace view view_administrators_updateable

AS select universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS, CITY,

 STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE, MANAGED_DEPARTMENTS from users natural join staff

natural join ADMINISTRATORS; */

create or replace trigger insert_admins_view

instead of insert

on view_administrators_updateable

for each row

declare

x users.userid%type;

begin

66

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into ADMINISTRATORS(userid,MANAGED_DEPARTMENTS)

values(x,:new.MANAGED_DEPARTMENTS);

end;

/

/*

select * from view_administrators_updateable;

insert into view_administrators_updateable(universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY,

STATE, ZIPCODE, EMAIL, PHONENO, USERTYPE_ID, STAFFTYPE,

MANAGED_DEPARTMENTS)

values (25,'1','Yazan','Fake','street','city','state','zipcode', 'yna@email.com','12312321'

,'STAFF','ADMINISTRATOR','Financial'); */

/* END ADMINISTARTORS */

/* FRONTDESKS */

create or replace view view_frontdesks_updateable

AS select * from users natural join staff natural join FRONTDESKS;

/*

create or replace view view_frontdesks_updateable

AS select universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS, CITY,

 STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE from users natural join staff natural join FRONTDESKS;

*/

create or replace trigger insert_frontdesks_view

instead of insert

67

on view_frontdesks_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into FRONTDESKS(userid) values(x);

end;

/

/*

select * from view_frontdesks_updateable;

insert into view_frontdesks_updateable(universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY,

STATE, ZIPCODE, EMAIL, PHONENO, USERTYPE_ID, STAFFTYPE)

values (25,'1','Yazan','Fake','street','city','state','zipcode', 'yna@email.com','12312321'

,'STAFF','FRONTDESK'); */

/* END FRONTDESKS */

/* COUNSELORS */

create or replace view view_counselors_updateable

AS select * from users natural join staff natural join COUNSELORS ;

select * from view_counselors_updateable;

/*

create or replace view view_counselors_updateable

68

AS select universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS, CITY,

 STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID, STAFFTYPE from users natural join staff natural join COUNSELORS ;

*/

create or replace trigger insert_counselors_view

instead of insert

on view_counselors_updateable

for each row

declare

x users.userid%type;

begin

insert into users(universityid, PASSWORD, FIRSTNAME, LASTNAME, STREETADDRESS,

CITY, STATE, ZIPCODE, EMAIL, PHONENO,

USERTYPE_ID)

values(:new.universityid, :new.PASSWORD, :new.FIRSTNAME, :new.LASTNAME, :new.ST

REETADDRESS, :new.CITY,

:new.STATE, :new.ZIPCODE, :new.EMAIL, :new.PHONENO, :new.USERTYPE_ID)

RETURNING USERID INTO x;

insert into staff(userid,STAFFTYPE) values(x,:new.STAFFTYPE)

RETURNING USERID INTO x;

insert into COUNSELORS(userid) values(x);

end;

/

/*

select * from view_counselors_updateable;

insert into view_counselors_updateable(universityid, PASSWORD, FIRSTNAME,

LASTNAME, STREETADDRESS, CITY,

STATE, ZIPCODE, EMAIL, PHONENO, USERTYPE_ID, STAFFTYPE)

values (109,'1','Yazan','Fake','street','city','state','zipcode', 'yna@email.com','12312321'

,'STAFF','COUNSELOR'); */

/* END COUNSELORS*/

/***

END OF UPDATEABLE USER VIEWS

69

**/

/* 4 updateable view for bookings

 These work with a trigger to allow us to simplify adding bookings, which are spread across 2

tables. */

 /* Appointments */

drop view view_appointments_updateable;

create view view_appointments_updateable

AS select * from bookings natural join appointments;

/*

create view view_appointments_updateable

AS select BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER, START_TIME,

END_TIME,

BOOKING_DATE, USERID, tutorid from bookings natural join appointments;

*/

create or replace trigger insert_appointment_view

instead of insert

on view_appointments_updateable

for each row

declare

x APPOINTMENTS.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

insert into appointments(bookingid, tutorid) values(x,:new.tutorid);

end;

/

/*

select * from view_appointments_updateable;

70

insert into view_appointments_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME,

END_TIME, BOOKING_DATE, USERID, TUTORID)

values ('APPOINTMENT', NULL,'L206', 1, 'Spring2016','01-DEC-16',

'01-DEC-16','10-MAR-16', '10000002','21103942'); */

/* END Appointments */

 /* EVENTS */

drop view view_events_updateable;

create view view_events_updateable

AS select * from bookings natural join events;

/*

create view view_events_updateable

AS select BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER, START_TIME,

END_TIME,

BOOKING_DATE, USERID, event_name, topic from bookings natural join events;

*/

create or replace trigger insert_events_view

instead of insert

on view_events_updateable

for each row

declare

x events.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

insert into events(bookingid, event_name, topic) values(x,:new.event_name, :new.topic);

end;

/

71

/*

select * from view_events_updateable;

insert into view_events_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME,

END_TIME, BOOKING_DATE, USERID, EVENT_NAME, TOPIC)

values ('APPOINTMENT', NULL,'L206', 1, 'Spring2016','01-DEC-16',

'01-DEC-16','10-MAR-16', '10000003','Test Name', 'Test Topic'); */

/* END EVENTS */

/* TRAINING_SESSIONS */

drop view view_trainingsess_updateable;

create view view_trainingsess_updateable

AS select * from bookings natural join training_sessions;

/*

create view view_trainingsess_updateable

AS select BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER, START_TIME,

END_TIME, BOOKING_DATE, USERID,

TRAINING_TITLE from bookings natural join training_sessions;

*/

create or replace trigger insert_trainingsess_view

instead of insert

on view_trainingsess_updateable

for each row

declare

x training_sessions.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

insert into TRAINING_SESSIONS(BOOKINGID, TRAINING_TITLE)

values(x, :new.TRAINING_TITLE);

72

end;

/

/*

select * from view_trainingsess_updateable;

insert into view_trainingsess_updateable(BOOKINGTYPE_ID, STATUS, ROOM,

DURATION, SEMESTER, START_TIME,

END_TIME, BOOKING_DATE, USERID, TRAINING_TITLE)

values ('APPOINTMENT', NULL,'L206', 1, 'Spring2016','01-DEC-16',

'01-DEC-16','10-MAR-16', '10000003','Test Title'); */

/* END TRAINING_SESSIONS */

/* RESERVATIONS */

drop view view_reservation_updateable;

create view view_reservation_updateable

AS select * from bookings natural join reservations;

/*

create view view_reservation_updateable

AS select BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER, START_TIME,

END_TIME, BOOKING_DATE, USERID

,RESERVATION_DETAIL from bookings natural join reservations;

*/

create or replace trigger insert_reservations_view

instead of insert

on view_reservation_updateable

for each row

declare

x reservations.BOOKINGID%type;

begin

insert into BOOKINGS(BOOKINGTYPE_ID, STATUS, ROOM, DURATION, SEMESTER,

START_TIME, END_TIME, BOOKING_DATE, USERID)

values(:new.BOOKINGTYPE_ID, :new.STATUS, :new.ROOM, :new.DURATION, :new.SEM

ESTER, :new.START_TIME,

:new.END_TIME, :new.BOOKING_DATE, :new.USERID)

RETURNING bookingid INTO x;

73

insert into RESERVATIONS(BOOKINGID, RESERVATION_DETAIL)

values(x, :new.RESERVATION_DETAIL);

end;

/

/*

select * from view_reservation_updateable;

insert into view_reservation_updateable(BOOKINGTYPE_ID, STATUS, ROOM, DURATION,

SEMESTER, START_TIME,

END_TIME, BOOKING_DATE, USERID, RESERVATION_DETAIL)

values ('APPOINTMENT', NULL,'L206', 1, 'Spring2016','01-DEC-16',

'01-DEC-16','10-MAR-16', '10000003','Test Reservation Detail');

*/

/* END RESERVATIONS */

/***

END OF UPDATEABLE BOOKINGS VIEWS

**/

74

Chapter 6.

After finishing all requirement analysis, conceptual and logical design, not only the SQL work

we displayed in previous chapters, our team also began to develop our front-end demo. Then,

following the feedback from our client, our finalized our front-end demo that met all basic

functional needs this Wednesday (12/07/16). Now, we will give a systematic walkthrough to

show how our front-end works, and at the end of this chapter, our team offers the URL link to

this new online booking system.

Click “LOGIN” button to

access to individual account

Students log in

75

Username: wanv1174

Password: llove416@

 Log in

Click this button

76

Select room

from list

Select

Booking

Date

77

Select

Booking

Time

Submit

new

booking

request

78

Click here to remove request

Bookings list after removing request

79

Staff click here to log in

Click here to manage

the booking requests

Username: wanv1173

Password: llove416@

 Log in

80

Staff, such as

counselor, click to

approve students’

booking request

Staff, such as

counselor, click to

decline students’

booking request

81

Administrator click here to log in

Username: wanv1172

Password: llove416@

 Log in

Administrator click here to manage users

82

Display all active users

Get referral key to create a

new user

83

Referral key

Create new user account

84

Here, to make the dropdown list of location, we added one more table just into our front-end,

“ctstzip” table, which contains 41,755 rows.

Continuing to work on “Administrator” page:

Create new user account  set up user’s information: can

use drop-down list to select location

Click here to manage equipment

85

Add new equipment

Update the status/condition of Equipment

86

Click here to manage rooms

Insert new room here and ensure input

‘F’ in “Room Locked” to guarantee this

new-added room could be booked

87

URL Link: http://ec2-35-161-250-55.us-west-2.compute.amazonaws.com/

Click “Update Room” to fill out the new

information of existing room

http://ec2-35-161-250-55.us-west-2.compute.amazonaws.com/

88

Chapter 7.

Implementation Plan

To develop this online Booking & Scheduling system, our team made the following detailed

implementation plan at the beginning of this semester, and we show the status of each major task

of our implementation plan.

Costing Estimation

Not only the detailed implementation plan, our team also provides the expected costing plan of

our project. The table below clearly list the price of each paid item and the estimated hours spent

in both our implementation and future potential development.

Task Start Date Duration End Date Status

1 Team Organization 8/22/2016 5 8/26/2016 on time

Find out all teammates one EDM group requires

Define the name and project direction of our team

Determine the potential customer list

2 Client Connection 8/27/2016 4 8/30/2016 on time

2.1 Send out the request emails

2.2 Schedule & Hold the first client meeting

3 Requirement Analysis 9/1/2016 9 9/9/2016 on time

3.1 Schedule & Hold the further meetings with different people in client team

3.2 Summarize meeting notes

3.3 Make requirement analysis

3.4 Generate a list of client requirements & Construct background story of client

3.5 Check with client and correct misunderstanding points

4 Conceptual Design 9/10/2016 16 9/25/2016 on time

4.1 Design the ERD based on client story

4.2 Check with professor

4.3 Correct the errors and send the copy of finalized ERD to client

5 Logical Design 9/20/2016 26 10/15/2016 delayed, but not for the entire project

5.1 Create the conceptual data dictionary

5.2 Check with the professor

5.3 Correct mistakes & Make normalization

5.4 Design the integrity constrains

5.5 Finish relational data dictionary

6 SQL Work 10/16/2016 37 11/22/2016 delayed, but not for the entire project

6.1 Set up table script in Oracle based on logical design

6.2 Testing & Debugging of DB table script

6.3 Generate query questions & Summarize the needs to triggers/procedures

6.4 Write sql code for our query questions and needed triggers

6.5 Testing & Debugging

7 Front-end Demo 11/1/2016 38 12/7/2016 on time

7.1 Deternine the implementation platform (server)

7.2 Hold group meeting to discuss about the design of front-end

7.3 Convert all oracle sql coding into MySQL version, only for front-end

7.4 Program the front-end

7.5 Post our coding work on Amazon server

7.6 Present the draft of our solution

7.7 Improve our work based on comments from both classmates and professor

7.8 Testing & Debugging of front-end

8 Report Generation 12/1/2016 9 12/9/2016 on time

8.1 Assign writing task(s) to each teammate

8.2 Schedule & Hold the last client meeting to deliver our finalized solution

8.3 Finish all writing work of final report

8.4 Hold a group meeting to check all work and submit on time

8.5 Send the source code, costing plan, and potential problems with recommendations to client

Detailed Implementation Plan of LIGHT^HOUSE team's Project

89

Implementation Platform

Amazon Web Service offers one-year free trial, and it supports many kinds of programming

languages (HTML, PHP, MySQL, CSS, etc., also which we used to develop our online booking

system) and software. Therefore, our team selected Amazon Web Service (AWS) as our

implementation platform. After the delivery of our final solution, we will provide the source

code for our client. They can finally determine whether or not they will continue using AWS as

their implementation platform.

Lesson Learnt

At the end of our project report, we want to talk about the key technological challenges our team

experienced during this semester. These key challenges are front-end implementation and

figuring out the differences between Oracle and MySQL. Most of our team are not familiar with

MySQL before, but we need to convert all SQL work from oracle format into MySQL format

because we selected Amazon Web Services (AWS) to finish our interface. However, through this

process, our team learnt a lot about MySQL. It has several unique advantages comparing to

Oracle, but not all functions of MySQL are friendly to users. For instance, MySQL has

commands, “UPDATE CASCADE” and “DELETE RESTRICT”, but Oracle doesn’t have these

two. It means that we need to create and add triggers if we want to realize synchronous update in

Oracle SQL. Moreover, “DELETE RESTRICT” could help protect parent tables from

automatically mistaken deletions in child tables, but “DELETE CASCADE” couldn’t.

Secondly, it is not easy for our group to create a completed and fancy frontend within limited

time even though it’s not hard to start. To begin with, there are a variety of tasks required for this

project, which means that it’s impossible for all teammates to focus on frontend implementation.

Furthermore, we spent a long time in the improvements of both ERD and Data Dictionary. That

is, we need to guarantee our frontend implementation to follow with our conceptual and logical

designs. At last, although some members of our team already had different levels of

Task / Item Labor Hours (in hrs) Price ($)

Team Organization 5

Client Connection 5

Requirement Analysis 15

Conceptual Design 30

Logical Design 40

SQL Work 60

Front-end Demo 80

Report Generation 30

Further development of advanced system features 50

Maintenance 1 hr/month

Amazon Web Server 1-year free

Contact Sheet $0.1/piece

Expected Costing Plan of LIGHT^HOUSE team's Project

90

programming skills, but we are not familiar with PHP and HTML before. Therefore, the learning

process of new programming languages costed us much time. Especially, it is hard for us to build

a real-time scheduling and booking function of our frontend system. However, our team really

obtained many great opportunities to practice our programming skills.

The last not the least, not only the knowledge of programming languages, we also leant a lot

from our teamwork. Firstly, each teammate was so busy with his/her own tasks, so we realized

how important the time management is. Sometimes, it is difficult for us to meet together.

Therefore, we created To-Do list together, which ordered what we need to finish. Moreover, our

team was divided into several subgroups based on the preferences and strengths of each member.

Then, each subgroup worked on different parts of our project, and it was easier for fewer

members to meet together. All these are useful to guarantee all our work to be finished on time,

which really helped us to save a lot of time and increase the efficiency of entire group.

